首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

2.
Clones of human cytotoxic T cells (Tc) specific for Epstein Barr virus (EBV) were isolated from peripheral blood lymphocyte (PBL) cultures stimulated repeatedly with autologous EBV-transformed lymphoblastoid cell line (LCL) cells in vitro. The method employed to clone EBV-specific Tc was a limiting dilution technique utilizing T cell growth factor (TCGF). The EBV specificity of Tc clones was determined by showing that they were significantly cytotoxic for autologous LCL cells but not for either autologous PBL or (natural killer-sensitive) K-562 cells. Eight EBV-specific Tc clones derived from a single donor exhibited distinct cytotoxic patterns against allogeneic LCL targets. Two clones were cytotoxic to LCL targets sharing both HLA-A26 and B15 antigens with effectors, and killing by two other clones was strongly restricted to autologous LCL cells. The four remaining clones showed cytotoxicities against various allogeneic LCL targets irrespective of HLA antigen expression. Eight EBV-specific Tc clones derived from a second donor also exhibited a wide spectrum of cytotoxicity to allogeneic LcL targets. We conclude that EBV-specific Tc, induced in vitro, consist of a number of clones with respect to restrictions imposed by the major histocompatibility complex. The determinants regulating these restrictions may include not only private HLA antigenic determinants that are defined by the HLA serotyping, but also undefined HLA antigenic determinants.  相似文献   

3.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Cloned T cell lines from mixed lymphocyte cultures stimulated with autologous Epstein Barr virus- (EBV) transformed lymphoblastoid cell line (LCL) cells were established using a limiting dilution technique in the presence of T cell growth factor (TCGF). The T cell lines included two distinct clones of cytotoxic T cells (Tc) in addition to EBV-specific Tc. A cytotoxic profile of one cloned line was similar to that of endogenous NK cells in peripheral blood. The other cloned Tc line showed an anti-human cytotoxicity. The susceptible targets for this latter Tc line were various human cells, including autologous LCL and peripheral blood lymphocytes (PBL), stimulated with pokeweed mitogen, along with NK-sensitive and NK-resistant cell lines. Weak cytotoxic activity was detected against various xenogeneic cell lines. Furthermore, autologous and allogeneic cloned T cell lines were resistant to killing by the anti-human effector clone. These t wo distinct cloned Tc lines expressed the Leu-1 and Leu-2a antigens, which are markers of suppressor/cytotoxic T cells.  相似文献   

5.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

6.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

7.
We recently generated a series of human alloantigen-specific, CD3+,TCR-gamma,delta+ clones by stimulating CD3+,CD4-,CD8- T cells from normal individuals with allogeneic lymphoblastoid cell lines (LCL). As reported previously, these clones display cytotoxic activity against their specific stimulators but not against irrelevant LCL. Further studies of these and other TCR-gamma,delta+ clones, described in this report, indicate that most but not all of these clones express the NK cell associated marker, NKH-1 or Leu-19, and kill NK-sensitive targets such as the K562 and Molt 4 lines, but not an irrelevant LCL or NK-resistant line, Raji. TCR-gamma,delta+ clones which lacked expression of Leu-19 lysed their allospecific targets but had no detectable NK activity. The allospecific cytotoxicity of Leu-19+ and Leu-19- clones was inhibited by mAb to CD3 or the TCR delta-chain. In contrast, the NK-like activity of the Leu-19+ clones was enhanced by these antibodies over a wide range of antibody concentration. Although mAb to LFA-1 markedly inhibited both the allospecific and NK-like activity of these clones, an HLA class I framework specific mAb (W6/32) had no effect on NK-like cytolysis but did inhibit allospecific killing, suggesting that the target structures on the surface of allospecific and NK-sensitive cells are distinct. The receptors utilized by the TCR-gamma,delta+ clones to recognize NK-sensitive and allospecific targets are also distinct, since killing of NK-sensitive targets was blocked by the presence of cold (unlabeled) NK-sensitive cells but not by cold allospecific targets, whereas allospecific cytolysis was inhibited by cold allospecific targets but not by NK-sensitive cells. We conclude that some CD3+,TCR-gamma,delta+ clones exhibit NK-like as well as allospecific killing and that these two activities are mediated by distinct receptor-ligand interactions.  相似文献   

8.
Twenty-four patients with liver metastases from gastric or colorectal cancer were treated with OK-432-combined adoptive immunotherapy (AIT). Lymphocytes isolated from regional lymph nodes or peripheral blood were cultured with medium containing T cell growth factor and sonicated tumor extract antigen (SE-Ag) for 9–13 days. The cultured lymphocytes were transferred mainly through the hepatic artery after the administration of OK-432, a streptococcal preparation. Sixteen of the 24 patients received a low dose of anti-cancer agents between the OK-432 injection and cell transfer. When cultured without SE-Ag, regional lymph node lymphocytes (RLNL) showed significantly (P<0.05) higher cytotoxic activity against autologous tumor cells and, on the contrary, lower cytotoxic activity against K562 than peripheral blood lymphocytes (PBL). When cultured with SE-Ag, cytotoxicity of RLNL against autologous tumor cells was nearly equivalent to that of PBL. The blastogenesis of fresh PBL to SE-Ag was significantly (P<0.05) augmented after the OK-432-combined AIT. Two patients showed complete response and 4 patients showed partial response among 19 patients who had evaluable lesions. Five patients whose liver metastases were resected were treated with OK-432-combined AIT as an adjuvant therapy. To date they are alive without recurrence in the liver.Abbreviations AIT adoptive immunotherapy - RLNL regional lymph node lymphocytes - SE-Ag sonicated tumor extract antigen  相似文献   

9.
We have approached the challenge of generating a primary T cell response to Epstein-Barr virus (EBV) in vitro by stimulating naive T cells with the autologous EBV-transformed lymphoblastoid cell line (LCL), a rich source of EBV-associated cytotoxic T lymphocyte (CTL) epitopes. Responsive T cells from three EBV-seronegative donors were cloned in agarose, phenotyped for T cell markers by flow cytometry, and their cytotoxic properties analyzed in the 51Cr release assay. Most clones (greater than 95%) expressed the CD4 phenotype and 59% of these clones showed cytotoxic properties. The dominant CTL response was specific for FCS-associated epitopes presented by FCS-grown autologous LCL target cells and was restricted by class II HLA antigens. Other clonal components included: (i) an EBV-specific response by HLA-restricted CD4 CTL clones that did not discriminate between A- and B-type EBV transformants; (ii) an EBV-specific response by an HLA-restricted CD4 CTL clone that discriminated between A- and B-type transformants, and (iii) a nonspecific cytotoxic response by CD3+,4+,8-, CD3+,4-,8-, and CD3-,4-,8- clones that were broadly allotypic or restricted to the lysis of K562 target cells. The EBV-specific CTL clones did not lyse the autologous EBV-negative B or T cell blasts and their specificity patterns of lysis were supported by the cold target competition data. These studies highlight the role of CD4 CTL in the establishment in vitro of a primary immune response to a human virus.  相似文献   

10.
Analysis of cellular immune response to EBV by using cloned T cell lines   总被引:9,自引:0,他引:9  
Eight cloned T cell lines specific for Epstein Barr virus-transformed B lymphocytes were derived. In the presence of the autologous virus-infected B cells, the T cell lines show HLA-restricted cytotoxic activity and also secrete alpha-interferon in sufficient amounts to inhibit infection and transformation. Four of these clones showed restriction to a single HLA locus (two for A3, and two for B7) and three showed exquisite self-restriction lysing only autologous targets. These seven clones expressed the classical cell surface phenotype of cytotoxic T cells being T3, 8, 11, and la-positive and T4-negative. An eighth clone that lacked the T8 surface marker appeared to recognize both B7 and BW51. HLA restriction was confirmed: 1) by the ability of a monoclonal antibody against an HLA-A,B,C framework antigen (W6-32) to block the cytotoxicity; 2) the failure of the clones to lyse Daudi, an EBV-positive, HLA-A,B, C-negative cell line; and 3) successful competition of the cytotoxicity by autologous but not allogeneic cold targets. The cloned T cells do not kill EBV-negative targets such as autologous pokeweed mitogen blasts and cell lines including CEM and the natural killer cell target K562. The results suggest T cell clones may be generated against an EBV-associated membrane antigen on transformed B cells, perhaps equivalent to the lymphocyte-determined membrane antigen, and that the recognition is restricted by a single HLA determinant. We propose that single T cells can play multiple roles in controlling EBV infection in vitro and in vivo including the elimination of transformed cells by cytotoxicity and the prevention by secreted interferon of further re-infection and transformation.  相似文献   

11.
The present study was an in vitro attempt to define the effector mechanisms against the intracellular bacterium Legionella pneumophila. Monocytes from human peripheral blood leukocytes (PBL) were infected in vitro with L. pneumophila and cultured for 2 days to allow intracellular replication of the bacterium. Cells were then labeled with 51Cr and used as targets in a 4-h 51Cr-release assay. We report here that autologous nonadherent PBL effectively lysed infected monocytes, and this activity was enhanced when the effector cells were precultured with IL 2 for 2 days. The IL 2-activated killer cells were also cytolytic against uninfected cultured monocytes, but cytotoxicity was higher against Legionella-infected target cells in a dose-dependent manner. The effector cells were located in Percoll density fractions that were enriched for large granular lymphocytes. The phenotype of the effector cell activated by IL 2 was determined to be OKM1+, OKT11+, partially Leu-11+, and negative for Leu-M1, OKT4, OKT8, and Leu-7, indicating that it is neither a T cell nor a monocyte, and is possibly and NK subset that is Leu-11+ and Leu-7-. Cold target inhibition studies indicated that a similar recognition structure is shared by both infected and uninfected monocytes, but differs from that on K562 tumor target cells. Thus, in addition to tumor surveillance and controlling viral infections, killer cells can be activated to provide protection against intracellular bacterial infections.  相似文献   

12.
Monoclonal antibodies reactive with T cells, T cell subsets, B cells, monocytes, and natural killer cells were used to characterize the nature of mucosal lymphocytes in the human small intestine by application of the immunoperoxidase technique to tissue sections for light and electron microscopic examination. In addition, for comparison, peripheral blood mononuclear cells (PBL) were studied by immunoelectron microscopy. Most of the intraepithelial lymphocytes (IEL) were T cells (Leu-1+, T3+) and expressed the phenotype associated with cytotoxic/suppressor T cells (Leu-2a+, T8+). In contrast, a majority of T lymphocytes in the lamina propria expressed the phenotype associated with helper/inducer T cells (Leu-3a+, T4+). These observations confirm and extend the findings previously reported. In addition, a small number of cells in the lamina propria with the ultrastructural features of macrophages were found to react with anti-Leu-3a and anti-T4 antibodies. Although many IEL contained cytoplasmic granules and had ultrastructural features similar to those of circulating granular lymphocytes, none of these cells reacted with anti-Leu-7 (HNK-1), anti-T10, or anti-M1 antibodies. This suggests that IEL may not be related to circulating large granular lymphocytes, which are Leu-7+, T10+, M1+ and are associated with natural killer activity. Not only Leu-7+ PBL, but T8+, T4+, or T3+ mucosal lymphocytes or PBL also may contain cytoplasmic granules. Therefore, the cytoplasmic granules are not restricted to one cell type, in particular, to Leu-7+ cells.  相似文献   

13.
Human cytotoxic T lymphocyte (CTL) clones directed against herpes simplex virus (HSV)-infected cells were generated after stimulation of peripheral blood lymphocytes (PBL) with HSV type 1 (HSV-1) and HSV type 2 (HSV-2). These CTL clones were studied with regard to HSV type specificity and with regard to whether they also express helper cell activity. Some clones, generated after stimulation with HSV-1, were cytotoxic for autologous cells infected with either HSV-1 or HSV-2 ("HSV type common clones"), whereas other clones lysed HSV-1-infected cells only ("type-specific clones"). Similarly, after HSV-2 stimulation, both HSV-2 specific and HSV type common clones were obtained, indicating the heterogeneity of human cytotoxic T cells to HSV. All CTL clones tested were found to be bifunctional in that they also proliferated in response to stimulation with HSV. The HSV type specificity of the proliferative response was identical to that of the cytotoxic activity of the clones. An HSV type common clone, when stimulated with either HSV-1 or HSV-2, and an HSV-1 specific clone, when stimulated with HSV-1 but not with HSV-2, produced a factor, presumably interleukin 2 (IL 2), which induced proliferation of CTLL, an IL 2-dependent T cell line, providing evidence that our HSV-directed CTL clones also express helper cell activity. CTL clones that we previously reported were restricted in cytotoxic activity by HLA class II DR-1 or MB-1 antigens were found, in this study, to be restricted in proliferative response to HSV by these same HLA antigens. These results suggest that our bifunctional T cell clones directed against HSV may recognize the same viral antigenic determinants and the same HLA antigens for both cytotoxic and virus-induced proliferative activities. This is the first demonstration of human HSV type specific and HSV type common T cell clones and HSV specific T cell clones with both cytotoxic and helper cell activities.  相似文献   

14.
Tumor-infiltrating lymphocytes (TIL) were obtained from human ovarian tumors, expanded in the presence of IL-2 in culture and studied for cytotoxicity against fresh autologous and allogeneic ovarian carcinoma (CA) targets. TIL from ovarian tumors grew well in long term cultures, achieving from 8- to 682-fold expansion. TIL cultured with IL-2 were cytotoxic against both autologous and allogeneic fresh ovarian CA targets, and no specificity for autologous tumor could be demonstrated in any of the cultures. In all fresh TIL preparations, CD3+ lymphocytes were the major cell type and contained a high proportion (up to 51%) of activated (IL-2R+) cells as determined by two-color flow cytometry. Sorting of bulk TIL cultures followed by cytotoxicity assays identified the Leu-19+ cells, both CD3+ and CD3-, as effectors of cytotoxicity against autologous and allogeneic tumor cell targets. Cold target inhibition assays showed that allogeneic targets (both ovarian CA and a sarcoma) competed effectively with autologous ovarian CA targets for Leu-19+ effectors in TIL cultures. mAb to Leu-19 or Leu-2a did not block lysis of autologous targets by sorted effectors. OKT3 antibody augmented lysis of autologous targets by CD3+Leu-19- effectors only. These results show that non-MHC-restricted Leu-19+ effectors in cultures of TIL with 1000 U/ml of rIL-2 mediate lysis of autologous and allogeneic tumor cells. The CD3+Leu-19- cells, the main population in these cultures, do not mediate tumor lysis. To determine the phenotype of antitumor effectors in IL-2 cultures of TIL, cell sorting followed by functional assays are necessary.  相似文献   

15.
We examined the antigenic and functional characteristics of human peripheral blood lymphocytes that differentially express the CD16 (Leu-11) and Leu-19 (NKH-1) antigens. Leu-19 is a approximately 220,000 daltons protein expressed on approximately 15% of freshly isolated peripheral blood lymphocytes. Within the Leu-19+ subset, three distinct populations were identified: CD3-,CD16+,Leu-19+ cells; CD3+,CD16-,Leu-19+ cells; and CD3-,CD16-,Leu-19bright+ cells. Both the CD3+,CD16-,Leu-19+ and CD3-,CD16+,Leu-19+ populations mediated non-major histocompatibility complex (MHC)-restricted cytotoxicity against the NK-sensitive tumor cell K562 and were large granular lymphocytes. CD3-,CD16+,Leu-19+ NK cells were the most abundant (comprising approximately 10% of peripheral blood lymphocytes) and the most efficient cytotoxic effectors. The finding that CD3+,Leu 19+ lymphocytes mediated cytotoxicity against K562 unequivocally demonstrates that a unique subset of non-MHC-restricted cytotoxic CD3+ T lymphocytes are present in the peripheral blood of unprimed, normal individuals. However, CD3+,CD16-,Leu-19+ cells comprised less than 5% of peripheral blood lymphocytes, and the cytotoxic activity of this subset was significantly less than CD3-,CD16+,Leu-19+ NK cells. Most CD3+,Leu-19+ T cells co-expressed the CD2, CD8, and CD5 differentiation antigens. The antigenic and functional phenotype of peripheral blood CD3+,Leu-19+ cytotoxic T lymphocytes corresponds to the interleukin 2-dependent CD3+ cell lines that mediate non-MHC-restricted cytotoxicity against NK-sensitive tumor cell targets. A small population of Leu-19bright+ lymphocytes lacking both CD3 and CD16 was also observed. This population (comprising less than 2% of peripheral blood lymphocytes) contained both large agranular lymphocytes and large granular lymphocytes. CD3-,CD16-,Leu-19bright+ lymphocytes also mediate non-MHC-restricted cytotoxicity. The relationship of these CD3-CD16-,Leu-19bright+ lymphocytes to CD3+ T cells or CD16+ NK cells is unknown.  相似文献   

16.
The host immune response toward autologous human cancer is subject to regulation by the immunoregulatory network. We show that certain CD4+ T cell clones, derived from melanoma involved lymph node lymphocytes and from PBL stimulated by autologous melanoma cells, selectively down-regulated the induction of cytotoxic immune response of PBL against the respective autologous melanoma cells in two autologous systems. In both systems, only the generation of cytotoxic response against the autologous melanoma cells were suppressed. Cytotoxic response against EBV-infected autologous lymphoblastoid cell line in one case and cytotoxic responses against allogeneic targets in the other were not affected. In addition to suppressor activity selectively expressed against the autologous melanoma cells, the T cell clones up-regulated their Tac receptors when cocultured with the autologous melanoma cells and APC. These results support the existence of a putative tumor Ag-driven activation of regulatory T cells that affect cytotoxic immune response, in vitro, against autologous human melanoma.  相似文献   

17.
To define the characteristics of T cells associated with the gastrointestinal tract, the phenotypes and immunoregulatory function of T cells from mesenteric lymph node (MLN) and lamina propria lymphocytes (LPL) were compared to peripheral blood (PBL) and spleen lymphocytes in normal nonhuman primates. Mesenteric lymph node lymphocytes were characterized by a higher proportion of Leu-3+(CD4+) and 9.3+(alpha-Tp44) lymphocytes and a lower proportion of Leu-2+(CD8) lymphocytes than lymphocytes in other sites. LPL and MLN lymphocytes were both characterized by a higher proportion of cells having the helper-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) compared to PBL. A lower proportion of cells with the suppressor-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) was found in LPL, but not in MLN lymphocytes compared to PBL. In studies of the Leu-2+ T cells, it was found that whereas PBL, spleen, and LPL contained approximately equal proportions of Leu-2+, Leu-15+ (suppressor phenotype) and Leu-2+, 9.3+ lymphocytes (cytolytic T-cell phenotype), the MLN T cells were predominantly Leu-2+, 9.3+. Furthermore, the Leu-3/Leu-2 ratio was significantly higher in MLN compared to other sites. In pokeweed mitogen-stimulated cultures, the highest helper function for Ig synthesis was found in MLN. Cells from none of the sites studied showed evidence of increased suppressor cell activity. These results show that MLN and LPL T cells in normal nonhuman primates differ from T cells in peripheral blood and spleen. While both MLN and LPL have a high proportion of T cells with the helper-inducer phenotype, cells with the suppressor-effector phenotype are infrequent in MLN, while cells with the suppressor-inducer phenotype are infrequent in LPL.  相似文献   

18.
This study was undertaken to characterize interactions among human T cell subpopulations involved in the generation of suppressor T cells specific for a soluble antigen. Purified PPD-primed Leu-3+ cells, when co-cultured for 7 days with fresh autologous Leu-2+ cells, induced differentiation of Leu-2+ but not Leu-3+ cells into specific suppressor T cells, which subsequently inhibited the proliferative response of fresh Leu-3+ cells to PPD but not to tetanus toxoid or allogeneic non-T cells. The PPD-specific suppressor effect of activated Leu-2+ cells was not due to altered kinetics of the PPD response and also extended to the secondary response of PPD-primed Leu-3+ cells. Furthermore, only those Leu-2+ cells that lacked the 9.3 marker, an antigen present on the majority of T cells including the precursors of cytotoxic T cells, differentiated into suppressor T cells. To analyze the inducer population, fresh Leu-3+ cells were separated into Leu-3+,8- and Leu-3+,8+ subpopulations with anti-Leu-8 monoclonal antibody, activated with PPD, and then were examined for inducer function. Although both Leu-3+,8- and Leu-3+,8+ cells proliferated in response to PPD and upon activation expressed comparable amounts of HLA-DR (Ia) antigens, the Leu-3+,8+ subpopulation alone induced Leu-2+ cells to become suppressor-effectors in the absence of PPD-pulsed autologous non-T cells. Once activated, however, Leu-2+ suppressor cells inhibited the PPD response of both Leu-3+,8- and Leu-3+,8+ cells. These results indicate that antigen-primed Leu-3+,8+ inducer cells can directly activate Leu-2+, 9.3- precursors of antigen-specific suppressor T cells in the absence of antigen-pulsed autologous non-T cells.  相似文献   

19.
Three HSV type 1 (HSV-1) and HSV type 2 (HSV-2) common ("HSV-type common") and three HSV-1 specific CTL clones, which were CD3+, CD4+, CD8-, 4B4+, and 2H4-, were established. These clones proliferated in response to stimulation with HSV in the presence of autologous APC. The HSV type specificity of the proliferative response was identical with that of the cytotoxic activity of the clones. The cytotoxic activity and the proliferative response were both inhibited by addition of anti-HLA-DR mAb to the culture. After culture of these CTL clones with autologous B cells and macrophages followed by HSV Ag stimulation, anti-HSV antibody was detected in the culture supernatant. The HSV type specificity of the helper function for antibody production was identical with that of the cytotoxicity, i.e., HSV-type common clones, upon stimulation with either HSV-1, or HSV-2, and HSV-1-specific clones, upon stimulation with HSV-1 but not with HSV-2, showed helper activity for anti-HSV antibody production by autologous B cells. Moreover, it was found that these clones produced humoral factors which help autologous B cells to produce antibody. The helper factors were produced by T cell clones in an HSV-type-specific manner. These data suggest that some CD4+ T cells can simultaneously manifest both specific cytotoxicity and helper activity for Ag-specific antibody production by B cells, and that these multifunctional T cells might play an important role in protection against viral infection.  相似文献   

20.
We have previously demonstrated that fresh CD8+ T cells proliferate in response to autologous, alloantigen-primed CD4+ T cells, and differentiate into Ts cells, which inhibit the response of fresh T cells to the primary allogeneic stimulator cell but not irrelevant stimulators. Although such Ts do not have discernible cytolytic activity, like classical cytotoxic T cells (Tc) they express CD3 and CD8 on their surface and function in a class I MHC-restricted manner. Our study was an attempt to compare the surface phenotype and mechanism of action of Ts and Tc clones derived from the same individual. Ts clones were generated from donor JK by repeated stimulation of CD8+ T cells with an autologous CD4+ T inducer line specific for an allogeneic lymphoblastoid cell line (LCL). These clones were noncytolytic for either the inducer line or the allogeneic stimulator LCL. Tc clones, generated by direct stimulation of JK CD8+ T cells with the same allogeneic LCL, mediated potent, alloantigen-specific cytolysis. All Tc clones were alpha, beta TCR+, CD3+, CD4-, CD8+, CD11b-, and CD28+. Ts clones were also alpha, beta TCR+, CD3+, and CD8+, but in contrast to Tc clones, Ts clones were CD11b+ and CD28-. When added to MLR both Ts and Tc clones inhibited the response of fresh JK CD4+ T cells to the original but not irrelevant allogeneic LCL. However, Ts inhibited the response of only those CD4+ T cells that shared class I)MHC determinants with the Ts donor, whereas Tc inhibited the response of CD4+ T cells from all responders, regardless of HLA type. Pretreatment of Ts clones with mAb to CD2, CD3, or CD8 blocked suppression, whereas similar pretreatment of Tc clones blocked cytotoxicity in 4-h 51Cr release assays but had no effect on Tc-mediated suppression of the MLR. These results suggest that both Ts and Tc clones can inhibit the MLR but they do so through different mechanisms. Moreover, the maintenance of distinct surface phenotypes on these long term clones suggests that Ts may be a distinct sublineage of CD8+ T cells rather than a variant of CD8+ Tc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号