首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
该文对薇甘菊及其所在群落内19种植物(草本和木本)的叶片透射率、反射率和光合特征指标进行了测定, 结果表明:薇甘菊与其它植物透射和反射图谱的变化趋势都比较相近, 在各个光学特征指标与光合相关指标的相互关系中, 薇甘菊并没有表现出区别于同一群落内其它植物的特征。从平均值来看, 200-800 nm下叶片反射率和透射率由大到小依次为: 薇甘菊>草本植物>木本植物, 薇甘菊各光学植被指标(SR680、SR750和PRI)均低于其它植物的平均值, 但是其光合能力(光利用效率、水分利用效率、电子传递速率和净光合速率)与其它植物接近或稍高。而且, 薇甘菊夏季叶片反射和透射率明显高于冬季, 这有利于散失夏季过多光照和充分利用冬季短缺光照。薇甘菊叶片的上述光学特征, 可能是其生长于其它植物表面强光照环境的一种适应性表现, 有利于其在入侵地快速生长。  相似文献   

2.
该文对薇甘菊及其所在群落内19种植物(草本和木本)的叶片透射率、反射率和光合特征指标进行了测定,结果表明:薇甘菊与其它植物透射和反射图谱的变化趋势都比较相近,在各个光学特征指标与光合相关指标的相互关系中,薇甘菊并没有表现出区别于同一群落内其它植物的特征。从平均值来看,200—800nm下叶片反射率和透射率由大到小依次为:薇甘菊〉草本植物〉木本植物,薇甘菊各光学植被指标(SR680、SR750和PRO均低于其它植物的平均值,但是其光合能力(光利用效率、水分利用效率、电子传递速率和净光合速率)与其它植物接近或稍高。而且,薇甘菊夏季叶片反射和透射率明显高于冬季,这有利于散失夏季过多光照和充分利用冬季短缺光照。薇甘菊叶片的上述光学特征,可能是其生长于其它植物表面强光照环境的一种适应性表现,有利于其在入侵地快速生长。  相似文献   

3.
遮光处理对西葫芦幼苗形态特征及光合生理特性的影响   总被引:15,自引:4,他引:15  
研究了不同遮光处理对西葫芦幼苗形态及光合生理特性的影响.结果表明,在60%透光率条件下,西葫芦幼苗具有较高的相对生长率、净光合速率、气孔导度、蒸腾速率、单叶水分利用效率、饱和蒸汽压、表观量子效率和叶绿素含量,而胞间CO2浓度较低;西葫芦幼苗具有较高的光饱和点(1 125 μmol·m-2·s-1)、较低的光补偿点(15.2 μmol·m-2·s-1).弱光下西葫芦幼苗较耐低浓度CO2,而强光下的幼苗较耐高浓度CO2.60%透光率下西葫芦幼苗叶片丙二醛和脯氨酸含量最低,而过氧化物酶和过氧化氢酶活性则最高.  相似文献   

4.
Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.  相似文献   

5.
为了探讨不同种类猕猴桃皮孔、气孔器和叶片下表皮特征的差异及其分类学意义,该文利用光学显微镜观察五个猕猴桃种共计9份样品材料的一年生枝条韧皮部上皮孔的形态,结果发现供试猕猴桃皮孔呈长椭圆形或长梭形,不同种皮孔的长×宽、皮孔密度、皮孔面积和皮孔面积的百分比值存在差异但与种类划分无明显规律,皮孔的宽可明显区分所选4个中华猕猴...  相似文献   

6.
Groh B  Hübner C  Lendzian KJ 《Planta》2002,215(5):794-801
The outermost phellems of Abies alba Mill., Acer pseudoplatanus L., Aesculus hippocastanum L., Betula potaninii L.C. Hue and Sambucus nigra L. have been isolated enzymatically, resulting in membranes with five to seven heavily suberized cork cell layers. Water and oxygen permeances were determined for the phellem areas without lenticels. A special diaphragm made it possible to quantify permeances of single lenticels for the first time. The water permeance of phellems was in the range of 3x10(-5) to 9x10(-5) ms(-1) and can be predicted from the density of the phellem membranes with 93% accuracy. Embedded waxes amounted to 3% ( Aesculus) and up to 35% ( Betula) of the dry weight but affected water permeance only to a small degree. The sorption isotherms describing the water content of the phellems in relation to relative humidities followed a hyperbolic shape and indicated varying water contents among plant species. It is argued that water transfer across the phellems occurs via the middle lamellae. Phellem membranes were impermeable to oxygen. Removal of the waxes hardly changed this situation. Single lenticels from Betula and Sambucus were significantly more permeable to water and oxygen than phellem areas without lenticels. The water permeance was elevated by factors of 39 for Betula and 12 for Sambucus, the oxygen permeance by factors of 1,202 for Betula and 53 for Sambucus. Extraction of lenticels did not affect permeance. A quantitative comparison of the gas-exchange capacity of lenticels and stomata demonstrated the superiority of stomata. However, differences may be not more than one order of magnitude.  相似文献   

7.
Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r1 > 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases.  相似文献   

8.
The community composition and percent cover of vascular epiphytes were examined in relation to photosynthetic photon flux density (PFD), temperature, vapor pressure, and tree characteristics in the inner-crown of two emergent tree species, Hyeronima alchorneoides and Lecythis ampla, at La Selva Biological Station, Costa Rica. A total of 53 species were found in a total sampled branch area of 32 m2 in eight trees—four trees per species. Community composition varied both among individuals of the same tree species and between tree species. However, percent cover patterns of vascular epiphytes were significantly different between the two tree species; Hyeronima had a significantly greater percent cover of epiphytes than Lecythis . The higher percent light transmittance as well as lower humidity in Lecythis are likely causes of its lower percent cover of epiphytes.  相似文献   

9.
Recent reports have indicated a considerably inactivated PSII in twig cortices, in spite of the low light transmittance of overlying periderms. Corresponding information for more deeply located and less illuminated tissues like xylem rays and pith are lacking. In this investigation we aimed to characterize the efficiency of PSII and its light sensitivity along twig depth, in conjunction with the prevailing light quantity and quality. To that aim, optical methods (spectral reflectance and transmittance, chlorophyll fluorescence imaging, low temperature fluorescence spectra) and photoinhibitory treatments were applied in cut twig sections of four tree species, while corresponding leaves served as controls. Compared to leaves, twig tissues displayed lower chlorophyll (Chl) levels and dark-adapted PSII efficiency, with strong decreasing gradients towards the twig center. The low PSII efficiencies in the inner stem were not an artifact due to an actinic effect of measuring beam or to an enhanced contribution of PSI fluorescence. In fact, the PSII/PSI ratios in cortices were higher and those in the xylem rays similar to that of leaves. Inner twig tissues were quite resistant to photoinhibitory treatments, tolerating irradiation levels several-fold higher than those encountered in their microenvironment. Moreover, the extent of high light tolerance was similar in naturally exposed and shaded twig sides. The results indicate an increasing, inherent and light-independent inactivation of PSII along twig depth. The findings are discussed on the basis of a recently proposed model for photosynthetic electron flow in twigs, taking into account the specific atmospheric and light microenvironment as well as the possible metabolic needs of such bulky organs.  相似文献   

10.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

11.
Deckmyn  Gaby  Cayenberghs  Erwin  Ceulemans  Reinhart 《Plant Ecology》2001,154(1-2):123-133
The purpose of this study was to investigate whether differences in canopy architecture due to the investigated species (planophile versus erectophile, single versus mixed canopies) or to UV-B effects on plant morphology, lead to differences in UV-B and UV-B/PAR doses within canopies.The development of a very small (10 mm diameter) UV-B and PAR sensor on a long 5 mm wide stick allowed us to measure the penetration of UV-B and PAR in single and mixed canopies of the grass Dactylis glomerata and white clover, Trifolium repens. The plants were grown in greenhouses covered with different thicknesses (3 and 5 mm) of UV-transmittant plexi (12 and 18% UV-B exclusion).For clover, a planophile vegetation, radiation penetration was very low for both UV-B and PAR. UV-B penetration was much less than for PAR, resulting in low UV-B/PAR ratio's within the canopy. This is explained by the low UV-B transmittance of the leaves (<0.1 %) in combination with the planophile leaves.In the grass species, both UV-B and PAR penetrated much deeper into the canopy due to the erectophile structure. The difference between UV-B and PAR penetration was generally quite small except in very tall canopies.The mixed species canopies showed results comparable to the clover canopies. Due to the strongly increased grass growth in these plots, light penetration was generally much lower than in the single species cultures. The increased growth of grass in these mixed plots could be linked to the lower UV-B/PAR dose they received.In plots grown under the higher UV-B level there was a relative decrease in UV-B/PAR ratio within the canopy for both species, compared to canopies from the lower UV-B greenhouses. This could not be explained by changes in leaf angle or biomass, but might be linked to the increase in leaf transmittance of PAR.  相似文献   

12.
In this study we tested whether Pityogenes chalcographus L. beetles preferably infest their host tree, Picea abies (L.) Karst., through lenticels or not. In a second step the resin canal system, which is important for defence against bark beetles, was investigated under lenticels and under lenticel-free periderm. Beetle colonisation tests on breeding logs resulted in 93.2% successful invasions through lenticels, 4.2% through lenticel-free periderm, 1.2% through wounds, and 1.4% near branches (n=1,606). Three main reasons why beetles invade preferable sites are discussed, taking the function of lenticels to supply gas exchange of the interior tissues into consideration. First, attractive volatiles are more easily detectable over the lenticels, and this could be a stimulus for the bark beetles to invade their hosts through these structures. Secondly, the very loosely arranged tissues of the lenticel and bigger intercellular spaces in the cortex and secondary phloem under the lenticel permit the beetles easier movement towards the vascular cambium. Thirdly, the total resin canal area of both primary and secondary canals and the number of secondary resin canals were reduced under lenticels. A higher resin canal density beneath lenticels would constitute a barrier to gas movement.  相似文献   

13.
A transect of 47 mature trees was studied within an Atlantic rain-forest plot in northeastern Brazil to determinate effects of phorophyte specificity and environmental parameters vs. stochasticity on the structure of corticolous, crustose microlichen communities. A total of 150 lichen species was found, most being rare to extremely rare. Multivariate analysis of sample plots indicated subtle phorophyte preferences among certain lichen species, corresponding to differences in bark pH, degree of bark shedding, density and size of bark lenticels, and presence of milk sap. Individual and multiple regressions revealed correlations between lichen species richness; respectively, area cover and bark pH (negative); density and size of bark lenticels (negative); degree of bark shedding (negative); presence of milk sap (positive); and diffuse site factor (positive). No strongly delimited lichen communities were detected, but cluster analysis revealed three main groups and six subgroups with slightly different lichen species composition, each one with characteristic indicator species but with highly variable overall species composition. Beta diversity was high among samples and lacked spatial structure. However, beta diversity was significantly lower among samples belonging to the same tree species, independent of their spatial arrangement. It was concluded that community formation in tropical rain-forest understory lichens subtly correlates with two main environmental factor complexes—phorophyte bark characteristics and microclimate—but is to a large extent determined by the stochastic effects of species dispersal, especially of rare species.  相似文献   

14.
Small pieces of cuticle were removed from the following areas of the cockroach, P. americana, to determine the relative transmittance qualities across the visible and infrared regions of the spectrum: wing tip; abdominal tergite and sternite; light and dark pigmented areas of the pronotum; vertex; two pairs of wing tips plus underlying tergite. The transmittance across the spectral areas investigated showed significant differences in μW/cm2 between the cuticular areas assayed. A single wing tip possessed high transmittance qualities whereas the vertex and lesser pigmented cuticle showed considerably lower per cent transmission.  相似文献   

15.
A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65–72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 μs to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
郑芬  李兆佳  邱治军  赵厚本  周光益 《生态学报》2020,40(13):4516-4527
光环境与幼树功能性状的关系对天然林的更新与演替具有重要的生态学意义。以广东南岭区域天然常绿阔叶林下不同林龄(幼龄林,中龄林,老龄林)的森林群落为研究对象,通过监测冠层结构、林下光照数据和林下幼树功能性状等指标,研究林龄梯度下其冠层结构与林下光环境之间的关系,以及林下幼树功能性状对光环境的响应。结果表明:(1)中龄林叶面积指数显著高于幼龄林和老龄林(P<0.05),随着林龄的增长,林冠开度和透光率逐渐下降,林龄梯度下透光率、R/FR(红光/远红光比值)、Bw/Rw(宽带蓝光/宽带红光比值)差异极显著(P<0.001);(2)天然常绿阔叶林中透光率与光质之间极显著相关(P<0.001),R/FR随着透光率的增加而增加,Bw/Rw随着透光率的增加而减少。(3)林下幼树功能性状在光环境之间差异显著(P<0.05),老龄林林下幼树叶片氮含量显著高于幼龄林,而叶片重叠率显著低于幼龄林;(4)在本试验地中,R/FR和Bw/Rw的变化对林下幼树的高径比和光合作用并无显著影响,光强对同种植物不同光环境下最大净光合速率的影响较大。总体而言,林龄梯度冠层结构和光环境的差异能在一定程度...  相似文献   

17.
涝渍胁迫对喜树幼苗形态和生理的影响   总被引:11,自引:1,他引:10       下载免费PDF全文
为了解喜树对涝渍土壤条件的适应性, 通过温室土培盆栽试验, 从形态和生理两方面探讨了涝渍胁迫对1年生喜树(Camptotheca acuminata)实生苗的影响, 试验分对照、轻度渍水、渍水和淹水等4个处理, 处理时间为 21 d。结果表明, 喜树根系生长以轻度渍水最好, 其次为对照, 而渍水和淹水的处理初生根系逐渐腐烂、死亡, 与之相对应, 轻度渍水处理的根系活力与对照无显著差异, 但渍水和淹水处理随着处理时间的延长逐渐下降, 同时观察到渍水和淹水的喜树茎在水面以下部位出现较多的皮孔。随着处理时间的延长, 轻度渍水处理喜树叶片内POD和SOD活性一直保持较高水平, 渍水和淹水处理则表现出先升高后下降的趋势, 各个处理叶片中O2 、H2O2和MDA含量有逐渐升高的趋势, 且各处理之间均表现为淹水>渍水>轻度淹水>对照。各处理根系LDH活性在处理前期较对照低, 而在处理的中后期, LDH活性均比对照高, 以渍水和淹水处理最高。因此, 喜树在轻度渍水条件下, 一方面由于皮孔和不定根的增多, 根系能够获得更多的氧气, 另一方面由于POD和SOD抗氧化酶活性的增强, 降低了O2和H2O2对细胞的伤害, 喜树能够在轻度渍水的立地上正常生长。  相似文献   

18.
紫茎泽兰是著名的外来入侵植物,作为入侵的第一步,发芽及其幼苗生长应该与其强入侵能力有关.基于此,通过不同光照强度处理和不同打破休眠方法的双因素实验,旨在探讨紫茎泽兰种子是否具有需光萌发特性以及低温、水杨酸、聚乙二醇,硝酸钾等常规打破休眠方法和光照如何共同影响其萌发、幼苗生长等问题.结果表明:在全光照条件下,不同处理的紫茎泽兰种子的萌发率均大于63%,铝箔纸覆盖的遮光条件(0.23%光照)萌发率均大于60%,而在完全黑暗条件下,其萌发率较低(均小于30%),这表明紫茎泽兰种子具有需光萌发的特性.有别于以往对其它植物种子的报道,低温处理、水杨酸处理、聚乙二醇处理和硝酸钾处理不能代替光照打破种子休眠,显示紫茎泽兰种子可能处于一种强迫休眠状态(种子静态).全光照与水杨酸处理、PEG处理对幼苗生长具有交互影响:黑暗下水杨酸处理浓度与幼苗生物量成正相关(P<0.05),但全光照和加铝箔下不相关(P>0.05);全光照下PEG处理浓度与根长显著正相关(P<0.05),而加铝箔和黑暗下不相关(P>0.05).紫茎泽兰种子需光萌发特征及其幼苗生长特点是人为破坏表土壤、深层土壤种子库地表化导致快速入侵的基础.结果也为通过引入适宜树种造林来控制光照因子对紫茎泽兰进行生态控制提供了理论依据.  相似文献   

19.
Sara E. Scanga 《Plant Ecology》2014,215(8):927-935
Gap-dependent species are typically understood to have higher population growth rates (λs) when they are exposed to higher light transmittance. I investigated the relationship between both diffuse light and direct light transmittance and λ for the gap-dependent plant Trollius laxus using 5 years of data from 20 subpopulations (11 in created, experimental canopy gaps; 9 in intact canopy control areas). There was a nonlinear (unimodal) relationship between diffuse light and λ for T. laxus under the wide range of light levels encountered at the gap and control subpopulations [4–58 % diffuse photosynthetic photon flux density (PPFD)]. There was no relationship between direct light and λ. However, in the gaps, where light levels were generally greater than 20 % PPFD, both diffuse light and direct light had strong negative linear relationships with λ. Therefore, under wide-ranging light regimes, plant populations may show complicated, nonlinear responses to gap formation. Furthermore, gap-dependent plant populations may even decline in the brightest gaps. These results demonstrate that future studies on forest plant population dynamics should strive to include populations from a wide variety of light regimes, and avoid broadly categorizing light regimes as simply “gap” or “non-gap.”  相似文献   

20.
玉米和大豆条带间作模式下的光环境特性   总被引:13,自引:0,他引:13  
于2006—2007年对玉米/大豆窄条带间作系统的光环境特性进行观测,研究间作冠层内光合有效辐射(PAR)的空间分布,并分析光环境改变对作物产量的影响.结果表明:在生育早期,大豆条带边行(与玉米相邻行)底部光的透射率高于大豆内行,而玉米条带内行底部光的透射率高于边行;进入生殖生长后,冠层底部光的透射率变化不明显,平均透射率小于7%.在生育早期,内行大豆接收到的日平均光量子通量密度(PPFD)比边行高约10%;1∶3间作模式(I1处理)下,大豆边行和内行光的透射率均比2∶3间作模式(I2处理)高15%,表明I2处理的玉米条带对大豆的遮荫程度大于I1处理.在大豆开花之后,内行大豆接收到的日平均PPFD与两侧边行有显著差异,但边行之间差异不显著;内行和外行大豆光的透射率分别为38%和27%,但I1和I2处理之间差异不显著,表明两种间作模式下玉米条带对大豆的遮荫程度相近.大豆内行的生物量高于边行,而边行之间没有显著差异,表明在充分供水条件下,不同窄条带间作模式对作物生物量的影响主要是由于作物光环境的改变所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号