首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the case of a patient with an apparent homozygosity for the D1152H mutation located in exon 18 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The parents had no personal history of cystic fibrosis (CF) and referred to our laboratory after the diagnosis of fetal bowel hyperechogenicity. The proband presented with meconium ileus and normal sweat chloride test. Sequencing of the CFTR exon 18 together with quantitative genomic assays, such as real-time PCR and the multiplex ligation probe amplification (MLPA) techniques, were performed and revealed that the father was heterozygous for the D1152H mutation and the mother carried a large deletion of the CFTR gene encompassing the genomic sequence including the same mutation. The child inherited D1152H from his father and the large deletion of the CFTR gene from his mother. We suggest that D1152H likely acts as a mild mutation with a dominant effect on the severe deletion of exon 18, considering that after 3 years of clinical examinations the child shows no classical signs and symptoms of CF. Not testing for large deletions in subjects with apparent homozygosity for a mutated CFTR allele could lead to the misidentification of CFTR mutation carrier status.  相似文献   

2.
Mouse cartilage matrix deficiency (cmd), an autosomal recessive phenotype caused by absence of aggrecan, maps to Chromosome (Chr) 7 and is caused by a 7-bp deletion in exon 5 generating a premature stop codon (Watanabe et al. 1994). Another spontaneous mutation with the same locus and phenotype, cmd-Bc, has now been defined as the complete loss of exons 2 to 18, resulting in a significantly shortened mRNA (1.2 kb). The upstream breakpoint is in intron 1, 18.8 kb 3′ of exon 1; the downstream breakpoint lies 10.5 kb past the final aggrecan exon 18. The deletion is flanked by sequences homologous to topoisomerase I and II cleavage sites and a 7-bp direct repeat, suggesting the defect resulted from a nonhomologous recombination event. Additionally, the size of the first intron and the intron-exon structure between exons 12 and 14 were determined, establishing the length of the murine aggrecan gene as 68.6 kb. This report completes the structural analysis of the murine aggrecan gene, defines a second null mutation, and reinforces the importance of aggrecan in development. Received: 20 May 1999 / Accepted: 26 July 1999  相似文献   

3.
We report the molecular defect in an individual with homozygous hypobetalipoproteinemia. A unique TaqI restriction fragment length polymorphism was found in the midportion of the apolipoprotein B (apoB) gene using the genomic probe, pB51. The probe, which identifies TaqI fragments of 8.4 and 2.8 kilobases (kb) in normal individuals, hybridized to a single 11-kb fragment in the proband. The parents of the proband showed all three TaqI fragments, implying that they are heterozygotes for the mutant apoB allele. In this family, the mutant allele cosegregated with low total cholesterol levels and formal linkage analysis gave a decimal logarithm of the ratio score of 3.3 at a recombination frequency of 0. The polymorphic TaqI site was localized to an EcoRI fragment of 4 kb in normal individuals. The corresponding fragment in the proband was 3.4 kb, suggesting a 0.6-kb deletion in the mutant allele. Both the normal 4-kb EcoRI fragment and the mutant 3.4-kb EcoRI fragment were cloned and sequenced. In the normal allele, the 4-kb EcoRI fragment extends from intron 20 to 23. Exon 21 is flanked by Alu sequences that are in the same orientation. The mutant allele had a 694-bp deletion in this region which included a small part of the Alu sequence in intron 20, the entire exon 21, and most of the Alu sequence in intron 21. The polymorphic TaqI site, which lies within the Alu sequence in intron 21, was absent in the proband as a result of the deletion. The deletion of exon 21 results in a frame shift mutation and the introduction of a stop codon. Translation of the encoded mRNA would yield a prematurely terminated protein. This mutant apoB protein would be 1085 amino acids long with the 73 carboxyl-terminal residues out of frame. We postulate that the deletion of exon 21 is the consequence of a crossover event between the Alu sequences in introns 20 and 21 resulting in nonreciprocal exchange between two chromosomes.  相似文献   

4.
Recently, we have found an allelic deletion of the secretor alpha(1,2)fucosyltransferase (FUT2) gene in individuals with the classical Bombay phenotype of the ABO system. The FUT2 gene consists of two exons separated by an intron that spans approximately 7 kb. The first exon is noncoding, whereas exon 2 contains the complete coding sequence. Since the 5' breakpoint of the deletion has previously been mapped to the single intron of FUT2, we have cloned the junction region of the deletion in a Bombay individual by cassette-mediated polymerase chain reaction. In addition, the region from the 3' untranslated region of FUT2 to the 3' breakpoint sequence has been amplified from a control individual. DNA sequence analysis of this region indicates that the 5' breakpoint is within a free left Alu monomer (FLAM-C) sequence that lies 1.3 kb downstream of exon 1, and that the 3' breakpoint is within a complete Alu element (AluSx) that is positioned 1.5 kb downstream of exon 2. The size of the deletion is estimated to be about 10 kb. There is a 25-bp sequence identity between the reference DNA sequences surrounding the 5' and 3' breakpoints. This demonstrates that an Alu-mediated large gene deletion generated by unequal crossover is responsible for secretor alpha(1,2)fucosyltransferase deficiency in Indian Bombay individuals.  相似文献   

5.
A cDNA probe for the low density lipoprotein (LDL) receptor gene was used to screen DNA samples from 52 unrelated Finnish patients with the heterozygous form of familial hypercholesterolemia (FH) and 51 healthy controls. Southern blot analysis using the restriction enzyme PvuII revealed an abnormal 11 kb (kilo base-pair) restriction fragment in 16 (31%) of the patients but none of the controls. A more detailed restriction enzyme analysis of the DNA from patients revealed a mutation which apparently is due to an 8 kb deletion extending from intron 15 to exon 18 of the LDL receptor gene. Co-segregation of FH with the mutated gene was demonstrated in three families. These data are consistent with a ‘founder gene effect’ and support the assumption that recombinant DNA methods may have great impact on the diagnostics of FH in genetically homogeneous populations.  相似文献   

6.
7.
Four deletions in the human factor VIII gene have been characterized at the sequence level in patients with hemophilia A. Deletion JH 1 extends 57 kb from IVS 10 to IVS 18. Intron 13 and exon 14 are partially deleted in patients JH 7 and JH 37, with a loss of 3.2 and 2.4 kb of DNA, respectively. The 3' deletion breakpoint of the JH 21 event resides in intron 3 and extends 5' into intron 1, resulting in the loss of exons 2 and 3. Seven of the eight breakpoints sequenced (5' and 3' for each of the four deletions) occur in nonrepetitive sequence, while the 3' breakpoint of the JH 1 resides in an Alu repetitive element. All of the deletions are the result of nonhomologous recombination. The 5' and 3' breakpoints of JH 1, JH 7, and JH 37 share 2- to 3-bp homologies at the deletion junctions. In contrast, two nucleotides have been inserted at the JH 21 deletion junction. Short sequence homologies may facilitate end-joining reactions in nonhomologous recombination events.  相似文献   

8.
We report the molecular characterization of a Japanese Duchenne muscular dystrophy (DMD) patient. The analysis of genomic gene by polymerase chain reaction indicates that the individuals have a limited deletion within an amplified region, which encompasses exon 19 of DMD gene. The amplified region was sequenced. Comparison of the deletion joint sequence with the normal amplified region sequence indicates that both 5' and 3' deletion end points are present within exon 19 and the deletion removes total 52 bp out of 88 bp of exon 19. Both his mother and sister are carriers of the deletion-containing allele. The mutation introduces a termination codon at residue 791 in exon 20, and is predicted to result in the production of a severely truncated protein. This sort of deletion (designated as DMD-Kobe) might be classified as a new type of DMD gene abnormality.  相似文献   

9.
Cloning and characterization of the human beta-glucuronidase gene   总被引:2,自引:0,他引:2  
We have isolated a cosmid clone that contains GUSB, the human gene encoding beta-glucuronidase. The 21-kb gene contains 12 exons ranging from 85 to 376 bp in length. Exon 6 corresponds to the 153-bp deletion in the shorter of two types of cDNAs reported earlier, supporting the hypothesis that this cDNA arose by alternate splicing leading to exon skipping. The insert contains 4.2 kb of sequence upstream from the first exon and 6 kb 3' of the last exon. The clone expresses human beta-glucuronidase in stably transformed rat XCtk- cells. Comparison of the human gene organization with that recently reported for the murine beta-glucuronidase gene revealed that the intron/exon boundaries are identical. In the splice junctions, the most highly conserved regions are those identified as consensus sequences, and these are at least as highly conserved as bases encoding the translated portion of the gene.  相似文献   

10.
Mutations in the gene for the pigment-producing enzyme tyrosinase are responsible for type IA (tyrosinase-negative) oculocutaneous albinism (OCA). Most reported mutations have been single base substitutions. We now report three different frameshift mutations in three unrelated individuals with type IA OCA. The first individual has a single base deletion within a series of five guanidines, resulting in a premature stop codon in exon I on one allele and a missense mutation at codon 382 in exon III on the homologous allele. The second individual is a genetic compound of two separate frameshift mutations, including both the same exon I single base deletion found in the first individual and a deletion of a thymidine-guanidine pair, within the sequence GTGTG, forming a termination codon (TAG) in exon I on the homologous allele. The third individual has a single base insertion in exon I on one allele and a missense mutation at codon 373 in exon III on the homologous allele. The two missense mutations occur within the copper Bbinding region and may interfere with either copper binding to the enzyme or oxygen binding to the copper. These five different mutations disrupt tyrosinase function and are associated with a total lack of melanin biosynthesis.  相似文献   

11.
The lethal nonagouti (a(x)) mutation is a hypomorphic allele of the agouti coat color locus which, when homozygous, also leads to embryonic death around the time of implantation. To understand the molecular basis of these phenotypes, we identified and cloned a deletion breakpoint junction present in the ax chromosome. Long range restriction mapping demonstrated a simple deletion of approximately 100 kb, which does not affect agouti coding sequences, but begins only 4 kb 3' of the last exon, and thus may affect coat color by removing an agouti 3' enhancer. The Ahcy gene, which codes for the enzyme S-adenosylhomocysteine hydrolase (SAHase), is contained within a 20 kb region within the a(x) deletion. SAHase RNA and protein were detectable in early blastocysts and in embryonic stem cells, respectively, and analysis of embryos derived from an a(x)/a x a(x)/a embryo intercross indicated that a(x)/a embryos die between the late blastocyst and early implantation stages. Treatment of cultured embryos with an SAHase inhibitor, 3-deazaaristeromycin, or with metabolites that can result in elevated levels of cellular SAH, resulted in an inhibition of inner cell mass development, suggesting that loss of SAHase activity in a(x)/a(x) embryos is sufficient to explain their death around the time of implantation.  相似文献   

12.
13.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease of carbohydrate metabolism. HFI patients exhibit a deficiency of fructose 1-phosphate aldolase (aldolase B), the isozyme expressed in tissues that metabolize fructose. The eight protein-coding exons, including splicing signals, of the aldolase B gene from one HFI patient were amplified by PCR. Dot-blot hybridization of the amplified DNA with allele-specific oligonucleotide (ASO) probes revealed a previously described A149P mutation in one allele from the proband. The mutation in the other allele was identified by direct sequencing of the double-stranded PCR-amplified material from the proband. The nucleotide sequence of exon 9 revealed a 7-base deletion/1-base insertion (delta 7 + 1) at the 3' splice site of intron 8 in one allele. This mutation was confirmed by cloning PCR-amplified exon 9 of the proband and determining the sequence of each allele separately. ASO analysis of 18 family members confirmed the Mendelian inheritance of both mutant alleles. The implications of this unique splice-site mutation in HFI are discussed.  相似文献   

14.
15.
16.
Structure of the murine complement factor H gene   总被引:3,自引:0,他引:3  
Factor H is a regulatory protein of the alternative pathway of complement activation comprised of 20 tandem repeating units of 60 amino acids each. A factor H cDNA clone was used to identify 17 genomic clones from a cosmid library. Four clones were selected for analysis of intron/exon junctions and 5' and 3' regions of the gene and for mapping of the exons. The factor H gene was found to be comprised of 22 exons. Each repeating unit is encoded by one exon, except the second repeat, which is coded by two exons; the leader sequence is encoded by a separate exon. The exons range in size from 77 to 210 base pairs (bp) and average 178 bp. They span a region of approximately 100 kilobases (kb) on chromosome 1. The leader sequence exon is 26 kb upstream of the first repeat exon, representing the largest intron. The other introns range in size from 86 bp to 12.9 kb, and the average intron size is 4.7 kb. Analysis of the genomic organization of the factor H gene has provided insight into the protein structure and will enable the construction of deletion mutants for functional studies.  相似文献   

17.
18.
In a Japanese patient with familial LPL deficiency, a new null allelic mutation, one base pair deletion at nucleotide position 916 was identified in exon 5 of one allele. In exon 3 of the other allele, we found the same nonsense mutation as we described previously in other Japanese kindreds. For the deletional mutant allele, we developed a simple detection method and constructed the DNA haplotype.  相似文献   

19.
Allele-specific deletion in exon I of the HRAS1 gene   总被引:3,自引:1,他引:2       下载免费PDF全文
We have detected a 6-bp deletion in the untranslated first exon of a unique HRAS1 gene cloned from lymphocyte DNA of a familial melanoma patient. The deletion is without apparent functional consequence. Using an RNase protection assay, we have demonstrated the deletion in leukocyte DNAs of individuals unrelated to the patient. In these cases, the deletion marker is specifically associated with one class of common HRAS1 allele, thereby establishing the origin of the unique allele. We discuss the means by which DNA sequence heterogeneity at other loci may be rapidly analyzed.  相似文献   

20.
ApoB gene MspI RFLP in exon 26 changes amino acid 3611 from Arg to Gln   总被引:3,自引:0,他引:3  
An apolipoprotein B gene MspI RFLP was identified by the use of a probe to a portion of the 3' end of the gene. By Southern blotting analysis after digestion with MspI, this probe detected either a 9 kb or a 2.6 kb fragment. Family studies showed that these corresponded to alleles that segregated in a simple Mendelian fashion. The minor allele (9.0 kb) had a frequency of approximately 12% in an unrelated Caucasian population. Restriction mapping showed that the minor allele was due to the loss of an MspI site in exon 26. Sequencing of both alleles in the region containing the polymorphic MspI site revealed a single-base pair alteration which abolished the MspI site at codon 3611 of the mature apoB protein. In the major allele, this codon is CGG, which specifies Arg; whereas in the minor allele, it was CAG, which codes for Gln.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号