首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture and neurochemistry of the enteric nervous system was studied by use of whole-mount preparations obtained by microdissection of the horse jejunum. A myenteric plexus and two plexuses within the submucosa were identified. The external submucosal plexus lying in the outermost region of the submucosa had both neural and vascular connections with the inner submucosal plexus situated closer to the mucosa. Counts of neurones stained for NADH-diaphorase demonstrated the wide variation in size, shape and neurone content of individual ganglia in both the external and internal submucosal plexuses. The average number of cells/ganglion was similar in each plexus (about 25 cells). Immunoreactivities for galanin, vasoactive intestinal peptide and neuropeptide Y were observed in nerve cell bodies and fibres of each of the plexuses. Immunoreactivity for substance P was extensive and strong in nerve fibres of all plexuses but was weaker in cell bodies of the submucosal neurones and absent in the cell bodies of the myenteric plexus. Comparative quantitative analysis of immunoreactive cell populations with total cell numbers (enzyme staining) was indicative of neuropeptide colocalization in the external submucosal plexus.  相似文献   

2.
Whole-mount preparations of the porcine small intestine, consisting of the tela submucosa and the adjacent lamina muscularis mucosae, were used for scanning electron-microscopic investigation of the plexus submucosus externus (Schabadasch) after enzymatic digestion, fixation and HCI hydrolysis. The present results confirm previous light-microscopic data and provide irrefutable proof that within the submucosal plexus, considered by most authors as one ganglionated nerve plexus situated in the entirety of the tela submucosa, two distinct nerve meshworks can be distinguished, one lying close to the lamina muscularis mucosae, i.e., the plexus submucosus internus (Meissner), and the other, i.e., the plexus submucosus externus (Schabadasch), situated in the outer region of the tela submucosa against the circular smooth muscle layer. In addition to the distinct location of both plexuses, they are quite different with regard to the pattern and diameter of their nerve strands and the number and appearance of their ganglia.  相似文献   

3.
Summary In the small intestine of the pig, neuromedin U (NMU)-immunoreactivity was mainly confined to the nerve plexus of the inner submucosal and mucosal regions. After colchicine treatment, a high number of immunoreactive nerve cell bodies was observed in the plexus submucosus internus (Meissner), whereas only a low number was found in the plexus submucosus externus (Schabadasch). The plexus myentericus as well as the aganglionic nerve meshworks in the circular and longitudinal smooth muscle layers almost completely lacked NMU-immunoreactivity. Double-labeling experiments demonstrated the occurrence of distinct NMU-containing neuron populations in the plexus submucosus internus: (1) relatively large type-II neurons revealing immunoreactivity for NMU and calcitonin gene-related peptide (CGRP) and/or substance P (SP); (2) a group of small NMU- and SP-immunoreactive neurons; (3) a relatively low number of small neurons displaying immunoreactivity for NMU but not for SP. Based on its distributional pattern, it is concluded that NMU plays an important role in the regulation and control of mucosal functions.  相似文献   

4.
We examined the architecture of human submucosal nerve networks of gut segments derived from 12 individuals (each six from small and large intestines). Twelve undivided submucosal wholemounts were prepared and immunohistochemically stained for peripherin (nerve elements) and for α-smooth muscle actin (remnants of attached muscle bundles). We found two ganglionic nerve networks. The plexus submucosus externus was generally monolayered and located under the outermost surface of the submucosal wholemounts. Its nerve fibre strands frequently joined each other in acute or obtuse angles, the meshes of the network were relatively wide and frequently polyangular shaped. The plexus submucosus internus was generally multi-(mostly two- or three-)layered and occupied at least the inner half of the thickness of the wholemount, sometimes extending abluminally beyond the great submucosal vessels. Its meshes were irregular. The shapes of ganglia of the two plexus were generally different, those of the internal plexus were frequently grape-like whereas the neurons of external ganglia were mostly embedded in the contoures of the joining nerve fibres. Both plexus were intensely connected via coiled interconnecting strands, either with or without intercalated ganglia. For use of eponyms for two different submucosal plexus, the names of Meissner (inner) and Schabadasch (outer) are historically justified.  相似文献   

5.
Scanning electron microscopy of whole-mount preparations of the tela submucosa in the porcine small intestine, examined after trypsin digestion, fixation and HCl hydrolysis, visualized a clear differentiation of the submucosal plexuses, i.e., the plexus submucosus internus (Meissner) and the plexus submucosus externus (Schabadasch). The distinctive features refer to the topography, number, size and shape of the ganglia and the number and diameter of the nerve strands. The plexus of Meissner is closely apposed to the external surface of the lamina muscularis mucosae by the enveloping connective tissue and by connecting strands penetrating the lamina muscularis mucosae. Three distinctive subdivisions of connecting strands can be identified. Since the glial cells covering the ganglia and connecting strands have been preserved, neither individual neuronal cells nor axons can be observed.  相似文献   

6.
Summary The morphological and topographical features of the intramural enteric nervous system in the small intestine of the pig has been studied on whole mounts by means of neuron-specific enolase (NSE) and S-100 protein immu-nohistochemistry. A clear visualization of the myenteric plexus allows the recognition of its characteristic morphology, including the thin tertiary plexus coursing within the smooth muscle layers. In the tela submucosa two ganglionated plexuses, each with its own specific characteristics, can clearly be demonstrated: (1) the plexus submucosus externus (Schabadasch) located near the inner surface of the circular muscle layer at the abluminal side of the submucosal vascular arcades, and (2) the plexus submucosus internus (Meissner) close to the outer surface of the lamina muscularis mucosae at the luminal side of the submucosal vascular arcades. Due to the possibility to trace clearly the perivascular plexuses of these vascular arcades by use of immunohistochemical techniques with antibodies to NSE and S-100 protein, the two submucosal nerve plexuses can be demonstrated with exceptional clarity. This is the first report of an investigation of the intramural nerve plexuses of the small intestine of the pig using the NSE and S-100 immunostaining methods, which is sufficiently detailed to substantiate the characteristic topography and structure of the two submucosal plexuses and their relation to the smooth muscle layers and perivascular plexuses. The level of NSE immunoreactivity for enteric neurons displays great variation, a substantial proportion of the type-II neurons appearing strongly stained. Although little is known of the specific function of these enzymes, proposals are discussed.  相似文献   

7.
Calcitonin gene-related peptide (CGRP)-containing perikarya and axonal processes were localized by preembedding electron-microscopic immunocytochemistry in the porcine small intestine. Immunoreactive well-defined type II neurons were localized in the plexus myentericus, and plexus submucosus externus and internus. In some cases, they were found in direct contact to the basal lamina surrounding the ganlion, thus being in close apposition to the interstitial space. The perikarya are generally larger than the immunogative nerve cell bodies and have a typical smooth outline. The electron-microscopic features of the labeled nerve processes investigated provide evidence for their axonal nature. These ultrastructural observations confirm previous light-microscopic results which showed that CGRP-containing nerve cells in the porcine small intestine belong to the neuronal population of the type II cells, the processes of which display the ultrastructural features of axons. A large number of reactive varicosities show synaptic specializations on immunonegative nerve cell bodies, suggesting that at least part of the type II neurons have post-synaptic effects on CGRP-negative neurons.  相似文献   

8.
The distribution of adrenergic fibres in the ganglionated plexuses of the porcine small intestine has been made on air-dried stretch preparations using the glyoxylic acid fluorescence method. Adrenergic fluorescent fibres occur in the ganglia and internodal strands of the three fundamental ganglionated plexuses: the myenteric plexus (Auerbach) and the two superimposed meshworks of the plexus submucosus , i.e. the plexus submucosus externus ( Schabadasch ) and the plexus submucosus internus (Meissner). The plexus Auerbach consists of densely glyoxylic acid induced fluorescent (GIF) elongated ganglia with in general a longitudinal axis running parallel to the circular muscle layer and large dense interconnecting fibre tracts with primary, secondary and tertiary subdivisions. In the ganglia, the fibres are varicose, forming large fluorescent 'baskets' which might be related to the occurrence of well defined enteric neurones. The plexus Schabadasch can be distinguished from the plexus Meissner by its size, strongly fluorescent ganglia and broad densely fluorescent internodal strands. The pattern of fluorescing ring-like formations at the margin and out of the nodes, clearly present in the Auerbach and Schabadasch plexuses, completely lack in the plexus Meissner, the latter being narrow-meshed with smaller fluorescent 'baskets', indicating that the corresponding neurones are smaller in size. In the ganglionic nodes of all three plexuses the axons display comparatively more varicosities than in the fibre tracts. Each of the three main ganglionated enteric plexuses are quite different with regard to the pattern of the adrenergic network both in the ganglia and in the strands.  相似文献   

9.
Summary The general morphology of the intramural innervation of the myenteric plexus of the axolotl stomach has been investigated using antisera raised against neuron-specific enolase and a microtubule-associated protein. Additionally, the occurrence of serotonin and several peptidergic neurotransmitter/neuromodulator substances was studied.Immunoreactivity for galanin, vasoactive intestinal polypeptide, substance P and neuromedin U was found in both fibres and intrinsic perikarya, whereas the serotonin and calcitonin gene-related peptide-like-substance-containing nerve fibres seemed to be of extrinsic origin. The axolotl stomach myenteric plexus appeared to be devoid of enkephalin-, neuropeptide Y-, somatostatin-and bombesin-like immunoreactive nerve fibres and nerve cell bodies.Double labelling experiments revealed the presence of a subpopulation of substance P/calcitonin gene-related peptide-like immunoreactive nerve fibres. Contrary to mammals, no coexistence of neuromedin U and substance P was found. Our findings illustrate that besides a number of similarities, considerable species differences exist between urodeles and anurans with regard to the organization of the enteric nervous system.  相似文献   

10.
The immunocytochemical location of neuropeptide Y (NPY)-like immunoreactivity (LI) within the neuronal structures of the rat gastrointestinal (GI) tract was investigated with the indirect immunofluorescence method. NPY immunoreactive neurons were found throughout all regions of the GI tract with the largest number in the duodenum. NPY immunoreactive perikarya were mainly located in the submucosal ganglia. NPY labeled processes were extensively seen in the submucosal and myenteric plexuses, smooth muscles, muscularis mucosa, mucosa and surrounding blood vessels. Following 6-hydroxydopamine (6-OHDA) treatment, NPY immunoreactive nerve fibers around blood vessels disappeared completely and the reactive fibers in other regions were reduced in number. NPY immunoreactive nerve cell bodies in the ganglionic plexuses, however, were not affected by 6-OHDA treatment. Serial sections of the coeliac ganglion showed that NPY-LI was present in cell bodies which also displayed tyrosine hydroxylase (TH) immunoreactivity. Our results suggest that NPY is abundantly contained in both adrenergic and non-adrenergic neurons of the gut and may play an important role in the regulation of the GI tract.  相似文献   

11.
Brehmer A  Stach W  Addicks K 《Acta anatomica》1994,151(3):188-193
Ultrastructural differences between ganglia of the plexus submucosus internus (Meissner; PSI) and plexus submucosus externus (Schabadasch; PSE) are described. Comparison revealed a different glia index (ratio glia per neuron) between the PSE (3:1) and the PSI (1:1), the arrangement of PSI neurons in compartments and the appearance of broad membrane-to-membrane appositions inside the compartments of the PSI. Structural and immunohistochemical differences between the two plexuses are discussed. In general, PSE neurons show a wider variety in size and shape than most of the PSI neurons.  相似文献   

12.
Summary The origin of nerve fibers to the superficial temporal artery of the rat was studied by retrograde tracing with the fluorescent dye True Blue (TB). Application of TB to the rat superficial temporal artery labeled perikarya in the superior cervical ganglion, the otic ganglion, the sphenopalatine ganglion, the jugular-nodose ganglionic complex, and the trigeminal ganglion. The labeled perikarya were located in ipsilateral ganglia; a few neuronal somata were, in addition, seen in contralateral ganglia. Judging from the number of labeled nerve cell bodies the majority of fibers contributing to the perivascular innervation originate from the superior cervical, sphenopalatine and trigeminal ganglia. A moderate labeling was seen in the otic ganglion, whereas only few perikarya were labeled in the jugular-nodose ganglionic complex. Furthermore, TB-labeled perikarya were examined for the presence of neuropeptides. In the superior cervical ganglion, all TB-labeled nerve cell bodies contained neuropeptide Y. In the sphenopalatine and otic ganglia, the majority of the labeled perikarya were endowed with vasoactive intestinal polypeptide. In the trigeminal ganglion, the majority of the TB-labeled nerve cell bodies displayed calcitonin gene-related peptide, while a small population of the TB-labeled neuronal elements contained, in addition, substance P. In conclusion, these findings indicate that the majority of peptide-containing nerve fibers to the superficial temporal artery originate in ipsilateral cranial ganglia; a few fibers, however, may originate in contralateral ganglia.  相似文献   

13.
14.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   

15.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

16.
The proventriculus constitutes the glandular region of the chicken stomach. This organ is innervated by two parasympathetic networks, the myenteric and submucous plexus, and here we present a systematic study of this system by immunohistochemistry and electron microscopy. All the neurons and fibres were positive for the neural markers, protein gene product 9.5 and the amidating enzymes. Immunoreactivities for the constitutive neuronal isoform of the enzyme nitric oxide synthase and the vasoactive intestinal peptide were present in neuronal bodies suggesting an intrinsic origin for the similarly immunoreactive fibres found in the proventriculus. On the other hand, immunoreactivity to gastric inhibitory peptide was only found in varicose fibres making contact with the blood vessels and the glandular epithelium, but never in the neuronal somas, suggesting that this substance may be provided by an extrinsic nervous system whose neuronal bodies are located elsewhere. Electron microscopy revealed frequent neuromuscular and neuroepithelial connections in the muscle layers, the wall of the blood vessels and the epithelium. In addition, synapsis-like structures were identified in the proximity of cells belonging to the diffuse endocrine system, providing a new example of neuroendocrine contacts. No positivity was found for antibodies against other neural substances including somatostatin, peptide histidine–isoleucine, peptide tyrosine–tyrosine, neuropeptide tyrosine, bombesin, met-enkephalin, serotonin, substance P, galanin, calcitonin gene-related peptide and S-100 protein.  相似文献   

17.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

18.
A primary culture of the canine jejunal submucosa has been established and used to investigate neuronal somatostatin release. Immunocytochemical characterization of the cultures demonstrated the presence of the following peptidergic neurons: neurotensin (30%), somatostatin (27%), vasoactive intestinal polypeptide (14%), neuropeptide Y (10%), and substance P (5%). No immunoreactive neurons were observed with the available antisera to galanin, gastrin-releasing peptide, and motilin. The concentration of somatostatin-like immunoreactivity, as determined by radioimmunoassay of cell extracts, was 358 +/- 105 pmol/well. Basal release of somatostatin was 4.4 +/- 0.9% total cell content and was significantly inhibited by the addition of substance P at 1 and 100 nM. The addition of the calcium ionophore, A23187, with phorbol 12-myristate 13-acetate stimulated somatostatin release in a concentration-dependent manner. These data indicate that short-term cultures of the jejunal submucosal plexus will be an excellent model for determination of the factors influencing the release of neural somatostatin.  相似文献   

19.
Using enzyme and immunohistochemical methods on whole-mount preparations and cryostat sections, a morphologic and semiquantitative study was performed of the nervous tissue in the appendix and the ileum (areas with and without Peyer's patches) of the rabbit. The plexus submucous externus (Meissner) consists of a network of small ganglia, vaguely associated with the vascular submucosal plexus. From the nerve cell bodies, cell processes occasionally penetrate the lymphoid follicles at the junction between the mucosa and the submucosa while other extensions form a dense plexus in the lamina propria of the mucosa. No nerve fibers are present in the dome of the follicles. The plexus submucous internus (Henle), consisting of large cell bodies and large processes, closely follows the blood vessels. The numeration of the nerve fibers of the submucosal plexus endorses the histological finding that the appendix is a richly innervated lymphoid organ. In addition, the plexus myentericus (Auerbach) of the appendix is a network of small meshes, while in the ileum, in the area of Peyer's patches, the same plexus is composed of a network with large meshes. These differences point to a higher density of innervation in the appendix. Yet a specialized anatomic distribution of the innervation of lymphoepithelial structures cannot be demonstrated.  相似文献   

20.
Partially purified nerve varicosities prepared from canine small intestinal myenteric, deep muscular and submucosal plexuses were found to contain, by radioimmunoassay, gastrin-releasing polypeptide (GRP), substance P, Leu-enkephalin, Met-enkephalin, vasoactive intestinal polypeptide (VIP) and neurokinin A, but did not contain detectable amounts of neurokinin B. In all three plexus preparations, VIP was present in the highest concentration. In contrast to other species, GRP and the enkephalins were found to be present in relatively high concentrations in the submucosal plexus and GRP was present in low concentrations in the deep muscular plexus. Equal concentrations of substance P and neurokinin A were found in the myenteric and deep muscular plexus preparations but greater concentrations of substance P relative to neurokinin A were found in the submucosal plexus preparations. On reverse phase HPLC, a major peak of immunoreactivity occurred at the retention times of standard preparations for all six neuropeptides measured. Significant heterogeneity was found for GRP- and VIP-like immunoreactivity, especially in the submucosal plexus preparations. These partially purified canine small intestine nerve varicosity preparations may prove of value in studying release mechanisms for, and the posttranslational processing of, neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号