首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene delivery vectors must deliver their cargoes into the cytosol or the nucleus, where DNA or siRNA functions in vivo. Therefore it is crucial for the rational design of the nucleic acid delivery carriers. Compared with viral vectors, non-viral vectors have overcome some fatal defections in gene therapy. Whereas the most important issue for the non-viral vectors is the low transfection efficiency, which hinders the progress of non-viral carriers. Sparked by the structures of the virus and understanding of the process of virus infection, various biomimic structures of non-viral carriers were designed and prepared to improve the transfection issues in vitro and in vivo. However, less impressive results are achieved. In this review, we will investigate the evolution of the virus-mimicking carriers of nucleic acids for gene therapy, especially in cancer therapy; explore and discuss the relationship between the structures, materials and functions of the carriers, to provide guidance for establishing safe and highly efficient non-viral carriers for gene therapy.  相似文献   

2.
目前生物大分子核酸药物研发亟待突破的瓶颈是,如何使核酸药物能克服生物学屏障,实现体内有效输送。无生物安全隐患并具低 免疫原性、高基因包封能力和易于制备的非病毒载体仍存在输送效率低和化学毒性大等缺陷,其临床应用受到限制。介绍核酸药物的研发 现状,主要对非病毒核酸载体的研究现状及发展动态进行总结性回顾分析,并指出,虽然非病毒载体尚存在不足之处,但其自身优势仍使 其具有成为未来核酸药物输送体系主体的广阔应用前景。  相似文献   

3.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

4.
Cancer is one of the most wide-spread diseases of modern times, with an estimated increase in the number of patients diagnosed worldwide, from 11.3 million in 2007 to 15.5 million in 2030 (www.who.int). In many cases, due to the delay in diagnosis and high increase of relapse, survival rates are low. Current therapies, including surgery, radiation and chemotherapy, have made significant progress, but they have many limitations and are far from ideal. Although immunotherapy has recently offered great promise as a new approach in cancer treatment, it is still very much in its infancy and more information on this approach is required before it can be widely applied. For these reasons effective, safe and patient-acceptable cancer therapy is still largely an unmet clinical need. Recent knowledge of the genetic basis of the disease opens up the potential for cancer gene therapeutics based on siRNA. However, the future of such gene-based therapeutics is dependent on achieving successful delivery. Extensive research is ongoing regarding the design and assessment of non-viral delivery technologies for siRNA to treat a wide range of cancers. Preliminary results on the first human Phase I trial for solid tumours, using a targeted non-viral vector, illustrate the enormous therapeutic benefits once the issue of delivery is resolved. In this review the genes regulating cancer will be discussed and potential therapeutic targets will be identified. The physiological and biochemical changes caused by tumours, and the potential to exploit this knowledge to produce bio-responsive ‘smart’ delivery systems, will be evaluated. This review will also provide a critical and comprehensive overview of the different non-viral formulation strategies under investigation for siRNA delivery, with particular emphasis on those designed to exploit the physiological environment of the disease site. In addition, a section of the review will be dedicated to pre-clinical animal models used to evaluate the stability, safety and efficacy of the delivery systems.  相似文献   

5.
Transposable elements can be considered as natural, non-viral gene delivery vehicles capable of efficient genomic insertion. The plasmid-based transposon system of Sleeping Beauty (SB) combines the advantages of viruses and naked DNA molecules. In contrast to plasmid vectors, transposons integrate through a precise, recombinase-mediated mechanism into chromosomes, providing long-term expression of the gene of interest in cells. The advantages of transposons in comparison to viral systems include their simplicity and improved safety/toxicity profiles. In addition, the hyperactive SB100X is the first plasmid-based delivery system that overcomes the efficacy of non-viral delivery. The transposon delivery system consists of the transposase and the integration cassette, recognized by the transposase. The plasmid-based transposon delivery system can be combined with any non-viral delivery method. Here we provide two detailed protocols to apply SB-mediated, non-viral gene transfer in cultured cells. In our first example, we use a lipid-based delivery method in combination with the transposon-based integration system in an easy-to-transfect (HeLa) cell line. Second, we show how to achieve 40–50% stable expression of a transgene in clinically relevant, hard-to-transfect cells (hematopoetic stem cells, HSCs) by nucleofection. The given protocols are adaptable to any vertebrate cells in culture.  相似文献   

6.
BACKGROUND: Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS: An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS: Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS: We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration.  相似文献   

7.
由于具有高效靶向药物传递的潜力,病毒颗粒已成为药物和生命科学领域的研究焦点.病毒颗粒具有病毒性载体和非病毒性载体的优点,同时克服了两者的局限性.病毒颗粒药物传递系统具有无毒、生物相容性、生物可降解性和非自动免疫等特点.研究表明,病毒颗粒能够在细胞间转运多种具有生物活性的分子,例如核酸或者基因、多肽、蛋白质以及其它抗癌药物等,因此在疾病治疗方面可能具有重要作用.如何制备携带有生物活性材料和治疗试剂的病毒颗粒和确定病毒颗粒药物的最佳剂型是目前该领域中挑战性的课题.本文综述了病毒颗粒技术多方面的特征及应用前景.  相似文献   

8.
壳聚糖作为基因药物载体的研究进展   总被引:5,自引:0,他引:5  
苏惠霜  王一飞 《遗传》2006,28(10):1321-1324
以壳聚糖及其衍生物作为基因的载体的转染效率受到许多因素的影响, 如复合物粒子大小、壳聚糖/DNA的比值、壳聚糖的分子量、脱乙酰度、转染过程中血清的浓度、介质的pH值等。对壳聚糖进行一定程度的修饰, 可以改变壳聚糖的转染效率。介绍了壳聚糖作为基因转移载体的转染条件, 转染效率和转染机制的研究情况及研究进展。  相似文献   

9.
Gene therapy: progress and challenges.   总被引:6,自引:0,他引:6  
Gene therapy is the delivery of new genetic material into a patient's somatic cells for the treatment of disease and is made possible through the development of viral and non-viral gene transfer vectors. In the first five years of gene therapy, clinical studies failed to yield efficacy data with the vectors available at that time. The lack of consistent clinical benefit prompted the United States National Institute of Health Recombinant DNA Advisory Committee to evaluate gene therapy research and conclude that substantial improvements in gene transfer vectors were needed in the areas of vector safety and control of the level and duration of gene expression, and to increase the understanding of the biological interaction of gene transfer vectors with the host. We will describe the progress in development of gene delivery technology, focusing on improvements in vector safety, analysis of vector biodistribution and GMP manufacturing of viral and non-viral gene transfer systems over the last six years since the report. Whereas 5 years ago, investigators tested every vector for every potential disease indication, the accumulated database now enables investigators to select a single vector based upon it's known performance in a wide number of animal models and human clinical studies. We will also highlight several directions investigators have taken to improve the safety and efficacy of gene therapy vectors.  相似文献   

10.
BACKGROUND: The development of minimally invasive, non-viral gene delivery vehicles for the central nervous system (CNS) is an important technology goal in the advancement of molecular therapies for neurological diseases. One approach is to deliver materials peripherally that are recognized and retrogradely transported by motor neurons toward the CNS. Tet1 is a peptide identified by Boulis and coworkers to possess the binding characteristics of tetanus toxin, which interacts specifically with motor neurons and undergoes fast, retrograde delivery to cell soma. In this work, Tet1-poly(ethylenimine) (Tet1-PEI) was synthesized and evaluated as a neurontargeted delivery vehicle. METHODS: Tet1-PEI and NT-PEI (neurotensin-PEI) were synthesized and complexed with plasmid DNA to form polyplexes. Polyplexes were assessed for binding and uptake in differentiated neuron-like PC-12 cells by flow cytometry and confocal microscopy. In order to determine gene delivery efficiency, polyplexes were exposed to PC-12 cells at various stages of differentiation. Targeted binding of polyplexes with primary neurons was studied using dorsal root ganglion cells. RESULTS: Tet1-PEI and NT-PEI polyplexes bound specifically to differentiated PC-12 cells. The specificity of the interaction was confirmed by delivery to non-neuronal cells and by competition studies with free ligands. Tet1-PEI polyplexes preferentially transfected PC-12 cells undergoing NGF-induced differentiation. Finally, neuron-specific binding of Tet1-PEI polyplexes was confirmed in primary neurons. CONCLUSIONS: These studies demonstrate the potential of Tet1-PEI as a neuron-targeted material for non-invasive CNS delivery. Tet1-PEI binds specifically and is internalized by neuron-like PC-12 cells and primary dorsal root ganglion. Future work will include evaluation of siRNA delivery with these vectors.  相似文献   

11.
Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.  相似文献   

12.
Transposable elements have emerged as a promising candidate for human non-viral gene-therapy. The Tc1/mariner transposon Sleeping Beauty is to date one of the most efficient transposons in mammals. Sleeping Beauty transposase has so far mostly been delivered to cells via a DNA source. This might cause spontaneous integration of the transposase gene and cause fatal damage to the affected cell. Hence, it would be advantageous to employ a non-genetic source for the transposase. We here show that a novel Cell-penetrating peptide, M918, has the ability to facilitate cellular delivery of both the transposase Sleeping Beauty as a protein and a transposon donor-plasmid carrying an antibiotic resistance gene in vitro. The technique is a simple and straightforward one-step method that might render a safe and efficient delivery platform for Sleeping Beauty mediated gene therapy.  相似文献   

13.
Gene therapy is the purposeful delivery of genetic material to somatic cells for the purpose of treating disease or biomedical investigation. Either viral or non-viral vector methods can be used. The risk of collateral exposure of laboratory animal care personnel to gene therapy vectors is dependent on a number of factors. These factors are intrinsic to the gene therapy vector (the vehicle for genetic conveyance), product encoded by the genetic construct delivered, method of delivery, and immune status of the recipient. The component risks of gene therapy experiments can be analyzed to surmise the overall relative risk of the experiment. Knowledge of the components that contribute potential hazardous risk to a study can assist animal care staff in identifying area(s) where prudent practices should be focused. Gene therapy experiments involving viral vectors are generally performed at either biosafety level 2 or 3. The objective of this review is to report on various components of gene therapy experiments, focusing on characteristics of viral and non-viral vectors, to assist the laboratory animal science community in determining prudent biosafety practices.  相似文献   

14.
Gene therapy has emerged as one of the most promising therapeutic methods to treat various diseases. However, inadequate gene transfection efficacy during gene therapy demands further development of more efficient gene delivery strategies. Targeting genetic material to specific sites of action endows numerous advantages over non-targeted delivery. An ample variety of non-viral gene delivery vectors have been developed in recent years owing to the safety issues raised by viral vectors. Non-viral gene delivery vectors containing specific targeting ligands on their surfaces have been reported to enhance the gene transfection efficiency via receptor-mediated endocytosis for gene delivery. Among various targeting moieties investigated, carbohydrates and lectins (carbohydrate-binding proteins) played an essential role in gene delivery via either direct or reverse lectin targeting strategies. Lectins have a specific carbohydrate binding domain that can bind specifically to the carbohydrates. This review sheds light on various gene delivery nanovectors conjugated with either lectins or carbohydrates for enhanced gene transfection.  相似文献   

15.
Nucleic acids-based next generation biopharmaceuticals (i.e., pDNA, oligonucleotides, short interfering RNA) are potential pioneering materials to cope with various incurable diseases. However, several biological barriers present a challenge for efficient gene delivery. On the other hand, developments in nanotechnology now offer numerous non-viral vectors that have been fabricated and found capable of transmitting the biopharmaceuticals into the cell and even into specific subcellular compartments like mitochondria. This overview illustrates cellular barriers and current status of non-viral gene vectors, i.e., lipoplexes, liposomes, polyplexes, and nanoparticles, to relocate therapeutic DNA-based nanomedicine into the target cell. Despite the awesome impact of physical methods (i.e., ultrasound, electroporation), chemical methods have been shown to accomplish high-level and safe transgene expression. Further comprehension of barriers and the mechanism of cellular uptake will facilitate development of nucleic acids-based nanotherapy for alleviation of various disorders.  相似文献   

16.
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.  相似文献   

17.
作为基因治疗中的非病毒基因载体,阳离子纳米载体可通过电荷作用与核酸类药物相结合,具有广阔的应用前景。然而,其细胞毒 性,主要表现为诱导细胞凋亡,限制了其临床开发与应用,也成为阳离子纳米载体研究所关注的重点。揭示和准确评价阳离子纳米载体的 细胞毒性及其机制,将有助于设计和开发更安全、更高效地用于基因传递的阳离子纳米载体。综述常用作基因传递系统的阳离子纳米载体 材料阳离子脂质体、聚乙烯亚胺、多聚赖氨酸、聚苯乙烯纳米粒以及其他阳离子聚合物的细胞毒性及其机制研究进展。  相似文献   

18.
19.
The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ.  相似文献   

20.
Efficient target gene delivery into eukaryotic cells is important for biotechnological research and gene therapy. Gene delivery based on proteins, including histones, has recently emerged as a powerful non-viral DNA transfer technique. Here, we investigated the potential use of a recombinant mussel adhesive protein, hybrid fp-151, as a gene delivery material, in view of its similar basic amino acid composition to histone proteins, and cost-effective and high-level production in Escherichia coli. After confirming DNA binding affinity, we transfected mammalian cells (human 293T and mouse NIH/3T3) with foreign genes using hybrid fp-151 as the gene delivery carrier. Hybrid fp-151 displayed comparable transfection efficiency in both mammalian cell lines, compared to the widely used transfection agent, Lipofectamine 2000. Our results indicate that this mussel adhesive protein may be used as a potential protein-based gene-transfer mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号