首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloperoxidase synthesis during induction of differentiation of human promyelocytic leukemia HL-60 cells by 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. Differentiation was characterized by morphological changes, arrest of cell proliferation, development of cell adherence, and increased secretion of lysozyme. The cellular myeloperoxidase activity decreased early during induction of differentiation by TPA. Pulse-labeling experiments indicated that the rate of myeloperoxidase synthesis decreased to an undetectable level in cells exposed to TPA for 22 h. The relative amounts of myeloperoxidase mRNA in TPA-treated and untreated cells were determined by measuring translatable mRNA activity in a reticulocyte lysate system. Reduction in the myeloperoxidase mRNA level was observed as early as after 3 h treatment with TPA, and no myeloperoxidase mRNA was detected after 24 h. Time course experiments indicated that the time required for 50% reduction of myeloperoxidase mRNA in TPA-treated cells was approximately 5 h. These results suggest that TPA induces decrease of myeloperoxidase activity in HL-60 cells at a pretranslational level.  相似文献   

2.
Methylation and DNase I-hypersensitive sites of the myeloperoxidase gene in human myeloid leukemia HL-60 cells were studied by Southern blot hybridization using the myeloperoxidase gene probes. Digestion of DNA with a methylation-sensitive restriction endonuclease indicated that a CpG in the CCGG sequence located 3.53 kbp upstream of the myeloperoxidase gene was unmethylated in HL-60 cells expressing the gene, whereas it was methylated in K562 cells and human placenta not expressing the gene. The site in HL-60 cells remained unmethylated after retinoic acid- or 12-O-tetradecanoyl-phorbol-13-acetate-induced differentiation that arrests myeloperoxidase synthesis. Digestion of isolated nuclei with various amounts of DNase I indicated that four DNase I-hypersensitive sites were in an upstream region of the myeloperoxidase gene in HL-60 cells and three sites were within the gene. In retinoic acid-induced cells, the bands of the hypersensitive site near the 5' side of the gene and that in the first intron became weak, while that of the site in the fifth intron became strong. The bands of these hypersensitive sites were weak in K562 cells. The implications of these changes in tissue-specific expression and developmental down-regulation of the myeloperoxidase gene are discussed.  相似文献   

3.
Using human myeloperoxidase cDNA as a probe, a chromosomal gene related to myeloperoxidase was isolated from a human gene library. Comparison of the amino acid sequence deduced from the nucleotide sequence of the cloned gene with that of human eosinophil peroxidase purified from buffy coats has indicated that the isolated gene is the chromosomal gene for human eosinophil peroxidase. Like human myeloperoxidase gene, human eosinophil peroxidase gene consists of 12 exons and 11 introns spanning about 12 kilobases. The gene can code for a protein of 715 amino acids with a calculated Mr of 81,036. The heavy chain and the light chain of eosinophil peroxidase were located on the COOH and NH2 terminus of the protein, respectively. The coding sequences of eosinophil peroxidase and myeloperoxidase show homologies of 72.4% at the nucleotide and 69.8% at the amino acid level, while little homology was found in the 5'-flanking region. Northern hybridization and S1 mapping analysis of RNA from human leukemic cells have indicated that the eosinophil peroxidase gene is expressed in the eosinophilic subline of human HL-60 cells but not in the neutrophilic subline or in parental HL-60 cells.  相似文献   

4.
The processing and intracellular transport of myeloperoxidase were studied in the human promyelocytic leukaemia cell line HL-60 and in normal marrow cells labelled with [35S]methionine or [14C]leucine. Myeloperoxidase was precipitated with antimyeloperoxidase serum; the immunoprecipitates were subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and radiolabelled myeloperoxidase visualized by fluorography. During a 1 h pulse, myeloperoxidase was labelled in a chain of apparent Mr 90 000. With a subsequent chase, the Mr 90 000 polypeptide disappeared and was replaced by chains of Mr 62 000 and 12 400 corresponding roughly to the size of neutrophil myeloperoxidase subunits. The identification of the radioactive polypeptides as different forms of myeloperoxidase was established also by the similarity in patterns generated by partial proteolysis with V8 proteinase from Staphylococcus aureus. Processing of myeloperoxidase in HL-60 was slow; mature polypeptides were significantly increased only after 6 h. Another myeloperoxidase chain of apparent Mr 82 000 was an intermediate precursor or degradation form. Pulse-chase experiments in combination with sucrose-density-gradient separations of homogenates showed that the Mr 90 000 precursor was located in light density organelles only and not in granule fractions, whereas the Mr 82 000 precursor was located only in intermediate density organelles, suggesting that the latter is a product of the former. Processed mature myeloperoxidase was concentrated in the granule fraction, but some occurred in lower density organelles, which may indicate processing during intracellular transport. Only the Mr 90 000 polypeptide was secreted into the culture medium; this was also the only form found in the cytosol fraction.  相似文献   

5.
6.
We studied the expression of catalase and myeloperoxidase genes in the hydrogen peroxide-resistant variants of human myeloid leukemia HL-60 cells HP50-2 and HP100-1. Southern blot hybridization with catalase and myeloperoxidase cDNA probes indicated that the copy number of the catalase gene in HP50-2 and HP100-1 cells was two and eight times, respectively, higher than that in HL-60 cells, whereas the copy number of the myeloperoxidase gene was the same. The amplified catalase and c-myc genes in HP100-1 cells were not decreased by treatment of the cells with inhibitors of poly(ADP-Ribose) polymerase, such as nicotinamide and benzamide. RNA blot hybridization with cDNA probes indicated that the content of catalase mRNA in HP50-2 and HP100-1 cells was four and 16 times higher, respectively, than that in HL-60 cells. By contrast, the content of myeloperoxidase mRNA in HP50-2 and HP100-1 cells was only a few percent of that in HL-60 cells. Furthermore, fluorescent in situ hybridization of a catalase cDNA probe to chromosomes indicated that the catalase gene in HP100-1 was amplified in the p13 region of a derivative chromosome 11. These results indicate that the increased synthesis of catalase in these resistant cells is mainly due to increased expression of the catalase gene, and that the lack of myeloperoxidase synthesis in these cells is due to the absence of its mRNA.  相似文献   

7.
Myeloperoxidase precursors incorporate heme   总被引:1,自引:0,他引:1  
Myeloperoxidase of neutrophil granulocytes is synthesized as a larger molecular weight precursor, which is processed to yield mature polypeptides with molecular weights of 62,000 and 12,000. We have investigated the incorporation of heme into myeloperoxidase of the human promyelocytic HL-60 cell line labeled with 5-amino[14C]levulinic acid. Myeloperoxidase was isolated by immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and radiolabeled myeloperoxidase was visualized by fluorography. A 3-h pulse labeling with 5-amino[14C]levulinic acid resulted in labeling of the Mr 90,000 and Mr 82,000 precursor polypeptides. During subsequent chase of the label, conversion to mature radioactive heavy Mr 62,000 subunit was observed but no radioactivity was associated with the mature small Mr 12,000 subunit. Peptide mapping after proteolytic cleavage with V8 proteinase showed that 5-amino[14C]levulinic acid was associated with a single Mr 23,000 polypeptide while multiple radioactive fragments were visible after proteolytic cleavage of myeloperoxidase biosynthetically labeled with [14C]leucine. That 5-amino[14C]levulinic acid was specifically incorporated into heme of myeloperoxidase was also demonstrated by dissociation under reducing conditions which yielded 14C-labeled heme as indicated by reversed phase high pressure liquid chromatography. The ionophore monensin and the base chloroquine, which block processing of myeloperoxidase, did not affect the incorporation of 5-amino[14C]levulinic acid, further supporting the notion that the incorporation of heme is independent of final processing of the polypeptide. Our data establish that heme is incorporated into myeloperoxidase already at the level of the precursor and that processing yields a heme-containing heavy subunit and a heme-free small subunit.  相似文献   

8.
9.
Myeloperoxidase from human neutrophils was isolated by ion-exchange and gel-filtration chromatography and shown by SDS-polyacrylamide gel electrophoresis to be comprised of alpha and beta subunits with apparent Mr values of 58,000 and 15,000, respectively. The apparent Mr of the native protein was 130,000-140,000, indicating that the holoenzyme has the quaternary structure alpha 2 beta 2. Automated Edman degradation of the separated alpha and beta subunits showed that the amino-terminal sequences were different from one another and demonstrated no sequence microheterogeneity. Comparison of these sequences with those in the National Biomedical Research Foundation data bank of protein sequences revealed that the subunits of human myeloperoxidase were not homologous to any known protein. Myeloperoxidase purified from HL-60 cells grown in culture demonstrated the same alpha 2 beta 2 subunit structure. Three isoenzymes of myeloperoxidase, prepared by gradient elution from a CM-Sepharose column, underwent quantitative analysis. No structural basis for the different elution pattern of the myeloperoxidase isoenzymes was discerned by amino-acid analysis, N-terminal sequence, polyacrylamide gel electrophoresis, or digestion with neuraminidase or enzymes known to cleave N-linked heterosaccharides. The structural basis for the myeloperoxidase isoenzymes of human neutrophils, each possessing equivalent activity, is not apparent from these studies.  相似文献   

10.
11.
Myeloperoxidase is a component of the microbicidal network of polymorphonuclear leukocytes. The enzyme is a tetramer consisting of two heavy and two light subunits. A large proportion of humans demonstrate genetic deficiencies in the production of myeloperoxidase. As a first step in analyzing these deficiencies in more detail, we have isolated cDNA clones for myeloperoxidase from an expression library of the HL-60 human promyelocytic leukemia cell line. Two overlapping plasmids (pMP02 and pMP062) were identified as myeloperoxidase cDNA clones based on the detection with myeloperoxidase antiserum of 70 kDa protein expressed in pMP02-containing bacteria and a 75 kDa polypeptide produced by hybridization selection and translation using pMP062 and HL-60 RNA. Formal identification of the clones was made by matching the predicted amino acid sequences with the amino terminal sequences of the heavy and light subunits. Both subunits are encoded by one mRNA in the following order: pre-pro-sequences--light subunit--heavy subunit. The molecular weight of the predicted primary translation product is 83.7 kDa. Northern blots reveal two size classes of hybridizing RNAs (approximately 3.0-3.3 and 3.5-4.0 kilobases) whose expression is restricted to cells of the granulocytic lineage and parallels the changes in enzymatic activity observed during differentiation.  相似文献   

12.
13.
Myeloperoxidase is a major protein component of the azurophilic granules (specialized lysosomes) of normal human neutrophils and serves as part of a potent bactericidal system in the host defense function of these cells. In normal, mature cells, myeloperoxidase occurs exclusively as a dimer of Mr 150,000 while in immature leukemia cells, there are both monomeric (Mr 80,000) as well as dimeric species. Like other lysosomal enzymes, myeloperoxidase is synthesized as a larger glycosylated precursor (Mr 91,000) that undergoes processing through single-chain intermediates (Mr 81,000 and 74,000) to yield mature heavy (Mr 60,000) and light (Mr 15,000) subunits. To study the assembly of dimeric myeloperoxidase, azurophilic granules were isolated from either unlabeled or pulse-labeled ([35S]methionine/cysteine) HL-60 cells, and myeloperoxidase was extracted and separated into monomeric and dimeric forms by FPLC gel filtration chromatography. Steady-state levels of dimeric and monomeric myeloperoxidase were found to account for 67% and 33%, respectively, of the total peroxidase activity and were correlated with the levels of associated heme as measured by absorption at 430 nm. Labeled myeloperoxidase polypeptides were immunoprecipitated using a monospecific rabbit antibody and were identified and quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography and liquid scintillation counting. After a 2-h pulse, labeled myeloperoxidase species of Mr 74,000 and 60,000 were found in fractions coeluting with the monomeric form of myeloperoxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
We examined the mechanism of H(2)O(2)-induced cytotoxicity and its relationship to oxidation in human leukemia cells. The HL-60 promyelocytic leukemia cell line was sensitive to H(2)O(2), and at concentrations up to about 20-25 micrometer, the killing was mediated by apoptosis. There was limited evidence of lipid peroxidation, suggesting that the effects of H(2)O(2) do not involve hydroxyl radical. When HL-60 cells were exposed to H(2)O(2) in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN), we detected a 12-line electron paramagnetic resonance spectrum assigned to the POBN/POBN(.) N-centered spin adduct previously described in peroxidase-containing cell-free systems. Generation of this radical by HL-60 cells had the same H(2)O(2) concentration dependence as initiation of apoptosis. In contrast, studies with the K562 human erythroleukemia cell line, which is often used for comparison with the HL-60, and with high passaged HL-60 cells (spent HL-60) studied under the same conditions failed to generate POBN(.). Cellular levels of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase did not explain the differences between these cell lines. Interestingly, the K562 and spent HL-60 cells, which did not generate the radical, also failed to undergo H(2)O(2)-induced apoptosis. Based on this we reasoned that the difference in H(2)O(2)-induced apoptosis might be due to the enzyme myeloperoxidase. Only the apoptosis-manifesting HL-60 cells contained appreciable immunoreactive protein or enzymatic activity of this cellular enzyme. When HL-60 cells were incubated with methimazole or 4-aminobenzoic acid hydrazide, which are inhibitors of myeloperoxidase, they no longer underwent H(2)O(2)-induced apoptosis. Hypochlorous acid stimulated apoptosis in both HL-60 and spent HL-60 cells, indicating that another oxidant generated by myeloperoxidase induces apoptosis and that it may be the direct mediator of H(2)O(2)-induced apoptosis. Taken together these observations indicate that H(2)O(2)-induced apoptosis in the HL-60 human leukemia cell is mediated by myeloperoxidase and is linked to a non-Fenton oxidative event marked by POBN(.).  相似文献   

17.
Myeloperoxidase is a major component of specialized lysosomes known as azurophil granules in polymorphonuclear leukocytes or neutrophils. The processing of myeloperoxidase in human HL-60 promyelocytic leukemia cells was studied by pulse-labeling cells in culture with [35S]methionine followed by immunoprecipitation and identification of myeloperoxidase polypeptides from cell fractions after various chase intervals. These studies revealed the presence of a previously unidentified intermediate with Mr 74,000 which kinetically followed the appearance of a larger Mr 81,000 intermediate. Using an in vitro lysosomal preparation the newly identified Mr 74,000 intermediate was directly converted within protected granules to mature forms of myeloperoxidase (Mr 63,000 and 60,000). This conversion occurred optimally at pH 7.5 and was not inhibited by lysosomotropic agents (chloroquine, NH4Cl) or protonophores (monensin, carbonyl cyanide p-trifluoromethoxyphenylhydrazone). Furthermore, the uptake of radiolabeled amines indicated a neutral intragranular environment (pH 7.35-7.67) which remained unchanged in the presence and absence of 1 mM ATP or 2.5 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone. We conclude that, in contrast to other lysosomal pathways, the final proteolytic cleavage of myeloperoxidase does not require an acidic environment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号