首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray crystal structure analysis of the decamer C-G-A-T-T-A-A-T-C-G has been carried out to a resolution of 1.5 A. The crystals are space group P2(1)2(1)2(1), cell dimensions a = 38.60 A, b = 39.10 A, c = 33.07 A. The structure was solved by molecular replacement and refined with X-PLOR and NUCLSQ. The final R factor for a model with 404 DNA atoms, 108 water molecules and one magnesium hexahydrate cation is 15.7%. The double helix is essentially isostructural with C-G-A-T-C-G-A-T-C-G, with closely similar local helix parameters. The structure of the T-T-A-A center differs from that found in C-G-C-G-T-T-A-A-C-G-C-G in that the minor groove in our decamer is wide at the central T-A step rather than narrow, and the twist angle of the T-A step is small (31.1 degrees) rather than large. Whereas the tetrad model provides a convenient framework for discussing local DNA helix structure, it cannot be the entire story. The articulated helix model of DNA structure proposes that certain sequence regions of DNA show preferential twisting or bending properties, whereas other regions are less capable of deformation, in a manner that may be useful in sequence recognition by drugs and protein. Further crystal structure analyses should help to delineate the precise nature of sequence-dependent articulation in the DNA double helix.  相似文献   

2.
Given a specified DNA sequence and starting with an idealized conformation for the double helix (A-DNA or B-DNA), the dependence of conformational energy on variations in the local geometry of the double helix can be examined by computer modeling. By averaging over all thermally accessible states, it is possible to determine 1) how the optimum local structure differs from the initial idealized conformation and 2) the energetic costs of small structural deformations. This paper describes such a study. Tables are presented for the prediction of helix twist angles and base pair roll angles for both A-DNA and B-DNA when the sequence has been specified. Local deviations of helix parameters from their average values can accumulate to produce a net curvature of the molecule, a curvature that can be sharp enough to be experimentally detectable. As an independent check on the method, the calculations provide predictions for the longitudinal compressibility (Young's modulus) and the average torsional stiffness, both of which are in good agreement with experimental values. In examining the role of sequence-dependent variations in helix structure for the recognition of specific sequences by proteins, we have calculated the energy needed to deform the self-complementary hexanucleotide d(CAATTG) to match the local geometry of d(GAATTC), which is the sequence recognized by the EcoRI restriction endonuclease. That energy would be sufficient to reduce the binding of the incorrect sequence to the protein by over 2 orders of magnitude relative to the correct sequence.  相似文献   

3.
CURVATURE: software for the analysis of curved DNA   总被引:10,自引:1,他引:9  
Software is presented to plot the sequence-dependent spatialtrajectory of the DNA double helix and/or distribution of curvaturealong the DNA molecule. The nearest-neighbor wedge model isimplemented to calculate overall DNA path using local helixparameters: helix twist angle, wedge (deflection) angle anddirection (of deflection) angle. The procedures described provedto be very convenient as tools for investigation of a relationshipbetween overall DNA curvature and its gel electrophoretic mobility.All parameters of the model had been estimated from experimentaldata. Using these wedge parameters the program takes, as input,any DNA sequence and calculates the likely degree of curvatureat each point along the molecule. This information is displayedboth graphically and in the form of simplified representationsof curved double helices. The Software, CURVATURE, can thusbe used to investigate possible roles of curvature in modulationof gene expression and for location of curved portions of DNA,which may play an important role in sequence-specific protein-DNAinteractions.  相似文献   

4.
The effect of crystal packing on oligonucleotide double helix structure   总被引:11,自引:0,他引:11  
One of the questions that constantly is asked regarding x-ray crystal structure analyses of macromolecules is: To what extent is the observed crystal structure representative of the molecular conformation when free in solution, and to what degree is the structure perturbed by intermolecular crystal forces? This can be assessed with DNA oligomers because of an unusual aspect of crystallization self-complementary oligomers should possess a twofold symmetry axis normal to their helix axis, yet more often than not crystal of such oligomers do not use this internal symmetry. The two ends of the helix are crystallographically distinct though chemically identical. Complexes of DNA oligomers with intercalating drugs such as triostin A tend to use their twofold symmetry when they crystallize, whereas complexes with non-intercalating, groove-binding drugs ignore this symmetry unless the drug molecule is very small. A detailed examination of crystal packing in the dodecamer C-G-C-G-A-A-T-T-C-G-C-G provides an explanation of all of the foregoing behavior in terms of the mechanism of nucleation of DNA or DNA-drug complexes on the surface of a growing crystal. Asymmetry of the ends of the DNA helix is the price that is paid for efficient lateral packing of helices within the crystal. The actual end-for-end variation in standard helix parameters is compared with the experimental noise level as gauged by independent re-refinement of the same oligonucleotide structure where available, and with the observed extent of variation of these same parameters along the helix. Oligomers analyzed are the B-DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G, the A-DNA octamer G-G-T-A-T-A-C-C, and the phosphorothioate analogue of the B-DNA hexamer G-C-G-C-G-C. End-for-end variation, presumably the result of crystal packing is typically double the experimental noise level, and half the variation in the same parameter along the helix. Analysis of crystal packing in the phosphorothioate hexamer, which uses the same P212121 space group as the dodecamer, shows that the highly unsymmetrical B1 vs. BII backbone conformation probably is to be ascribed to crystal packing forces, and not to the sequence of the hexamer.  相似文献   

5.
6.
The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.  相似文献   

7.
Origin of DNA helical structure and its sequence dependence   总被引:9,自引:0,他引:9  
A Sarai  J Mazur  R Nussinov  R L Jernigan 《Biochemistry》1988,27(22):8498-8502
Conformational analysis of DNA shows that the origin of the B-form double helix can be attributed in large part to the atomic charge pattern in the base pairs. The charge patterns favor specific helical stacking of the base pairs. Base pairs alone--without backbones--have a strong tendency to form helix, indicating that the backbones play a rather passive role in determining the basic helical structure of DNA. It is mainly the electrostatic interactions determined by the charge pattern on base pairs that stabilize a particular helical conformation. The charge pattern in the base pairs appears to be responsible for much of the sequence dependence of DNA conformation, rather than steric clashes.  相似文献   

8.
Base sequence and helix structure variation in B and A DNA   总被引:22,自引:0,他引:22  
The observed propeller twist in base-pairs of crystalline double-helical DNA oligomers improves the stacking overlap along each individual helix strand. But, as proposed by Calladine, it also leads to clash or steric hindrance between purines at adjacent base-pairs on opposite strands of the helix. This clash can be relieved by: (1) decreasing the local helix twist angle between base-pairs; (2) opening up the roll angle between base-pairs on the side on which the clash occurs; (3) separating purines by sliding base-pairs along their long axes so that the purines are partially pulled out of the stack (leading to equal but opposite alterations in main-chain torsion angle delta at the two ends of the base-pair); and (4) flattening the propeller twist of the offending base-pairs. Simple sum functions, sigma 1 through sigma 4, are defined, by which the expected local variation in helix twist, base roll angle, torsion angle delta and propeller twist may be calculated from base sequence. All four functions are quite successful in predicting the behavior of B DNA. Only the helix twist and base roll functions are applicable to A DNA, and the helix twist function begins to fail for an A helical RNA/DNA hybrid. Within these limits, the sequence-derived sum functions match the observed helix parameter variation quite closely, with correlation coefficients greater than 0.900 in nearly all cases. Implications of this sequence-derived helix parameter variation for repressor-operator interactions are considered.  相似文献   

9.
S Jain  G Zon  M Sundaralingam 《Biochemistry》1991,30(14):3567-3576
The alternating DNA octamer d(GTGTACAC) has been grown in a novel hexagonal crystal form. The structure has been determined and refined to a 2-A resolution, with 51 water molecules. The A-DNA conformation is a variant of that observed for the tetragonal form of the same sequence (Jain et al., 1989) containing a bound spermine. The crystals belong to the space group P6(1)22, a = b = 32.40 A and c = 79.25 A, with one strand in the asymmetric unit. The new hexagonal structure was solved by rotation and translation searches in direct space and refined to a final R value of 12.7% by using 1561 unique reflections greater than 1.5 sigma (I). The electron density clearly shows that the penultimate A7 sugar had flipped into the alternative C2'-endo pucker. This dent in the molecule can be attributed to close intermolecular contacts. In contrast, in the tetragonal structure, the DNA is distorted in the central TA step, where the A5 backbone bonds C4'-C5' and O5'-P assume trans conformations. The hexagonal double helix more closely resembles the fiber diffraction A-DNA, compared to the tetragonal form. For instance, the tilt angle is higher (16 degrees vs 10 degrees), which is correlated with a larger displacement from the helix axis (3.5 vs 3.3), a lower rise per residue (2.9 vs 3.2), and a smaller major-groove width (6.1 vs 8.7), thus indicating that the variations in these global helical parameters are correlated. The propeller twist angles in both forms are higher for the G-C base pairs (15.3 degrees, 12.14 degrees) than for the A-T base pairs (10.8 degrees, 9.1 degrees), which is the reverse of the expected order. Unlike the tetragonal structure, the hexagonal crystal structure interestingly does not contain a bound spermine molecule. Our analysis reveals that the conformational differences between the tetragonal and hexagonal forms are not entirely due to the spermine binding, and crystal packing seems to play an important role.  相似文献   

10.
More than 60 years have passed since the work of Rosalind Franklin, James Watson, and Francis Crick led to the discovery of the 3D-DNA double-helix structure. Nowadays, due to the simple and elegant architecture of its double helix, the structure of DNA is widely known. The biological role of the DNA molecule (e.g., genetic information), however, along with the cellular mechanisms involving the DNA double helix (e.g., DNA replication) are topics that have not yet reached a broader public. In this educational article, we aim to provide a way for schoolchildren to live a three-dimensional experience that focuses on the DNA double helix structure. Moreover, taking advantage of an engaging and visual protocol, students will experience an overview of its biological implications. To do so, starting from a gene sequence, students will have the opportunity to build their own 3D-DNA double helix structure using PlayMais flakes.  相似文献   

11.
Alternating d(GA.TC)n DNA sequences are known to undergo transition to *H-DNA in the presence of zinc. Here, the effect of zinc on the secondary DNA structure of d(GA.TC)n sequences of different length (n = 5, 8, 10 and 19) was determined. Short d(GA.TC)n sequences form *H-DNA with a higher difficulty than longer ones. At bacterial negative superhelical density (- sigma = 0.05), zinc still induces transition to the *H-DNA conformation at a d(GA.TC)10 sequence but shorter sequences do not form *H-DNA. Transition to *H-DNA at a d(GA.TC)8 sequence is observed under conditions which destabilize the DNA double helix such as high negative supercoiling or low ionic strength. Our results indicate that a first step in the transition to *H-DNA is the formation of a denaturation bubble at the centre of the repeated DNA sequence, suggesting that the primary role of zinc is to induce a local denaturation of the DNA double helix. Subsequently, zinc might also participate in the stabilization of the altered DNA conformation through its direct interaction with the bases. Based on these results a model for the formation of *H-DNA is proposed.  相似文献   

12.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

13.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

14.
The helical repeat of DNA at high temperature.   总被引:6,自引:2,他引:4       下载免费PDF全文
The increasing number of studies on thermophilic organisms addressed the question of DNA double helix parameters at high temperature. The present study shows that the helix rotation angle per base pair omega of an unconstrained DNA decreases linearly upon temperature increase, up to the premelting range. In the ionic conditions tested, this rule extends to temperatures up to 85 degrees C, which is a common growth temperature for many hyperthermophilic organisms. In addition, the torsional constant K of DNA decreases with temperature, indicating that the energy required to modify the DNA twist is lower at high temperature. These findings have several implications for people working on the structure and enzymology of DNA at high temperature.  相似文献   

15.
Double helices, since the discovery of the DNA structure by Watson and Crick, represent the single most important secondary structural form of nucleic acids. The secondary structures of a variety of polynucleotide helices have now been well characterised with hydrogen-bonded base-pairs as building blocks. We wish to propose here the possibility, in a specific case, of a double stranded helical structure without any base-pair, but having a repeat unit of two nucleotides with their bases stacked through intercalation. The proposal comes from the initial models we have built for poly(dC) using the stacking patterns found in the crystal structures of 5'-dCMPNa2 which crystallises in two forms depending on the degree of hydration. These structures have pairs of nucleotides with the cytosine rings partially overlapping and separated by 3.3A. Using these as repeat units one could generate a model for poly(dC) with parallel strands, having a turn angle of 30 degrees and a base separation of 6.6A along each strand. Both right and left handed models with these parameters can be built in a smooth fashion without any obviously unreasonable stereochemical contacts. The helix diameter is about 13.5A, much smaller than that of normal helices with base-pair repeats. The changes in the sugar-phosphate backbone conformation in the present models compared to normal duplexes only reflect the torsional flexibility available for extension of polynucleotide chains as manifested by the crystal structures of drug-inserted oligonucleotide complexes. Intercalation proposed here could have some structural relevance elsewhere, for instance to the base-mismatched regions on the double helix and the packing of noncomplementary single strands as found in the filamentous bacteriophage Pf1.  相似文献   

16.
Two factors are mainly responsible for the stability of the DNA double helix: base pairing between complementary strands and stacking between adjacent bases. By studying DNA molecules with solitary nicks and gaps we measure temperature and salt dependence of the stacking free energy of the DNA double helix. For the first time, DNA stacking parameters are obtained directly (without extrapolation) for temperatures from below room temperature to close to melting temperature. We also obtain DNA stacking parameters for different salt concentrations ranging from 15 to 100 mM Na+. From stacking parameters of individual contacts, we calculate base-stacking contribution to the stability of A•T- and G•C-containing DNA polymers. We find that temperature and salt dependences of the stacking term fully determine the temperature and the salt dependence of DNA stability parameters. For all temperatures and salt concentrations employed in present study, base-stacking is the main stabilizing factor in the DNA double helix. A•T pairing is always destabilizing and G•C pairing contributes almost no stabilization. Base-stacking interaction dominates not only in the duplex overall stability but also significantly contributes into the dependence of the duplex stability on its sequence.  相似文献   

17.
Computer simulation of the dynamic structure of DNA can be carried out at various levels of resolution. Detailed high resolution information about the motions of DNA is typically collected for the atoms in a few turns of double helix. At low resolution, by contrast, the sequence-dependence features of DNA are usually neglected and molecules with thousands of base pairs are treated as ideal elastic rods. The present normal mode analysis of DNA in terms of six base-pair "step" parameters per chain residue addresses the dynamic structure of the double helix at intermediate resolution, i.e., the mesoscopic level of a few hundred base pairs. Sequence-dependent effects are incorporated into the calculations by taking advantage of "knowledge-based" harmonic energy functions deduced from the mean values and dispersion of the base-pair "step" parameters in high-resolution DNA crystal structures. Spatial arrangements sampled along the dominant low frequency modes have end-to-end distances comparable to those of exact polymer models which incorporate all possible chain configurations. The normal mode analysis accounts for the overall bending, i.e., persistence length, of the double helix and shows how known discrepancies in the measured twisting constants of long DNA molecules could originate in the deformability of neighboring base-pair steps. The calculations also reveal how the natural coupling of local conformational variables affects the global motions of DNA. Successful correspondence of the computed stretching modulus with experimental data requires that the DNA base pairs be inclined with respect to the direction of stretching, with chain extension effected by low energy transverse motions that preserve the strong van der Waals' attractions of neighboring base-pair planes. The calculations further show how one can "engineer" the macroscopic properties of DNA in terms of dimer deformability so that polymers which are intrinsically straight in the equilibrium state exhibit the mesoscopic bending anisotropy essential to DNA curvature and loop formation.  相似文献   

18.
Single crystal X-ray diffraction techniques have been used to determine the structure of the DNA octamer d(G-G-G-G-C-T-C-C) at a resolution of 2.25 A. The asymmetric unit consists of two strands coiled about each other to produce an A-type DNA helix. The double helix contains six G . C Watson-Crick base-pairs and two G . T mismatched base-pairs. The mismatches adopt a "wobble" type structure in which both bases retain their major tautomer forms. The double helix is able to accommodate this G . T pairing with little distortion of the overall helical conformation. Crystals of this octamer melt at a substantially lower temperature than do those of a related octamer also containing two G . T base-pairs. We attribute this destabilization to disruption of the hydration network around the mismatch site combined with changes in intermolecular packing. Full details are given of conformational parameters, base stacking, intermolecular contacts and hydration involving 52 solvent molecules.  相似文献   

19.
DNA in profile.     
The double helix structure of DNA is not necessarily straight but rather can be curved at almost every base pair. Thus, each piece of DNA possesses a unique silhouette, as individual as its base sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号