首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three descending brain interneurons (DNI, DNM, DNC) are described from Locusta migratoria. All are paired, dorsally situated neurons, with soma in the protocerebrum, input dendrites in the proto- and deuterocerebrum, and a single axon running to the metathoracic ganglion and sometimes further. In DNI the soma and all cerebral arborizations lie ipsilateral to the axon. Discrete regions of arborization lie in the ipsilateral and medial ocellar tracts, the midprotocerebrum and the deuterocerebrum. In the other ganglia the axon branches only ipsilaterally, principally laterally in the flight motor neuropil but also towards the midline. DNC is similarly organized to DNI, but the cell crosses the midline in the brain. Soma, the single projection into a lateral ocellar tract, and the midprotocerebral arborization all lie contralateral to the axon. The deuterocerebral arborization is, however, ipsilateral to the axon. The pattern of projections in the remaining ganglia resembles that of DNI. The soma and all cerebral arborizations of DNM lie ipsilateral to the axon. The arborization is only weakly subdivided into protocerebral, deuterocerebral and medial ocellar tract regions. In the remaining ganglia the arborization extends bilaterally to similar areas of both left and right flight motor neuropil. A table of synonymy is given, equating the various names used for these neurons by previous authors. The morphology correlates well with the known input and output connections. They respond physiologically to deviations from the normal flight posture mediated by ocelli, eyes and wind hairs and connect to the thoracic flight apparatus.  相似文献   

2.
Crustacean postural control is modulated by behavioral condition. In this study, we investigated how the responses of descending statocyst interneurons were affected during leg movements. Intracellular recording was made from an animal whose statoliths had been replaced with ferrite grains so that statocyst receptors could be activated by magnetic field stimulation. We identified 14 morphological types of statocyst-driven descending interneurons. Statocyst-driven descending interneurons always showed an excitatory response to statocyst stimulation on either ipsilateral or contralateral side to the axon. The response of each statocyst-driven descending interneuron to statocyst stimulation was differently modulated by leg movements in different conditions. During active leg movements, six statocyst-driven descending interneurons were activated regardless of whether a substrate was provided or not. In other two statocyst-driven descending interneurons, the excitatory input during leg movements was stronger when a substrate was provided than when it was not. One statocyst-driven descending interneuron received an excitatory input only during leg movements on a substrate, whereas another statocyst-driven descending interneuron did not receive any input during leg movements both on a substrate and in the air. These results suggest that the descending statocyst pathways are organized in parallel, each cell affected differently by behavioral conditions.Abbreviations EMG electromyogram - NGI nonspiking giant interneuron - SDI statocyst-driven descending interneuron  相似文献   

3.
The cockroach escape response begins with a turn away from a wind puff such as that generated by an approaching predator. The presence and direction of that wind is detected by hairs on the animal's cerci, and this information is conducted to the thoracic ganglia via two populations of giant interneurons. In the thoracic ganglia, the giant interneurons excite a number of interneurons, at least some of which in turn excite motor neurons that control leg movement. In this paper we examine response properties of various thoracic neurons to wind stimuli originating from different directions. Three sets of thoracic neurons were distinguished on the basis of latency. Type A interneurons had short latencies to wind stimuli (1.3-2.25 ms). Type B interneurons had longer latencies (4-6 ms), and motor neurons had the longest latencies (5.6-17.0 ms). Individual type A interneurons either responded equally to wind from all directions or were biased in their response. Directionality was related to the presence of ventral branches near one or both sides of the midline of the ganglion. Cells with ventral median (VM) branches on either side tended to be omnidirectional or front-rear biased, whereas cells with VM branches on only one side were biased to that side. Although several type B interneurons had strong wind responses and were directionally sensitive, they did not have VM branches. We hypothesize that the presence of VM branches in type A interneurons permits connection with ventral giant interneurons, and this connection accounts for their short latency and directional properties. This hypothesis will be tested in the companion paper.  相似文献   

4.
In Schistocerca gregaria ocellar pathways, large second-order L-neurons use graded potentials to communicate signals from the ocellar retina to third-order neurons in the protocerebrum. A third-order neuron, DNI, converts graded potentials into axonal spikes that have been shown in experiments at room temperature to be sparse and precisely timed. I investigated effects of temperature changes that a locust normally experiences on these signals. With increased temperature, response latency decreases and frequency responses of the neurons increase. Both the graded potential responses in the two types of neuron and the spikes in DNI report greater detail about a fluctuating light stimulus. Over a rise from 22 to 35°C the power spectrum of the L-neuron response encompasses higher frequencies and its information capacity increases from about 600 to 1,700 bits/s. DNI generates spikes more often during a repeated stimulus but at all temperatures it reports rapid decreases in light rather than providing a continual measure of light intensity. Information rate carried by spike trains increases from about 50 to 185 bits/s. At warmer temperatures, increased performance by ocellar interneurons may contribute to improved aerobatic performance by delivering spikes earlier and in response to smaller, faster light stimuli.  相似文献   

5.
1. In the crayfish brain, the responses of local spiking interneurons to body roll simulated by bending of statocyst hairs, were investigated with intracellular recording and staining techniques. The neurons had two separate branching portions in the protocerebrum and the deutocerebrum. They were named as type-I local neurons and further classified into 5 types (ac-U, vplc-U, vplc-B, vupc-U, vupc-B). 2. Vupc-U neurons showed excitatory responses and vplc-U neurons showed inhibitory responses to inward hair deflection of the statocyst ipsilateral to their deutocerebral branches. The other 3 types were of mixed populations of the interneurons showing either excitatory or inhibitory responses to the stimulation. 3. Of 10 type-I local neurons showing excitatory responses to inward hair deflection, 6 interneurons had output effects on oculomotor and/or descending neurons. All these 6 interneurons showed large EPSPs and much higher frequency of spikes to the hair stimulation than those of the other 4. All 8 type-I local neurons that showed inhibitory responses had no output effects. 4. Type-I local neurons controlled two equilibrium responses, compensatory eye movement and righting reflex, either simultaneously or independently.  相似文献   

6.
Somatostatin immunoreactivity occurs in a specific subgroup of cholinergic descending interneurons in the myenteric plexus of the guinea-pig small intestine. In the present work, we made light- and electron-microscopic investigations of chemically defined inputs to these neurons, in order that the origins of the connections of other neurons with them could be deduced. Somatostatin-immunoreactive synapses and close contacts were found on the cell bodies and filamentous processes of somatostatin neurons; these were 84% of all inputs. It is thus confirmed that this class of interneuron forms chains that project anally. Descending interneurons with immunoreactivity for nitric oxide synthase provided 14% of inputs to somatostatin-immunoreactive descending interneurons. An antiserum against a calcium-binding protein, calbindin, was used as marker for the majority of intrinsic primary afferent neurons, AH/Dogiel type II neurons; this class of neurons provided only 2.5% of the inputs to somatostatin-immunoreactive descending interneurons. We conclude that somatostatin-immunoreactive descending interneurons are involved in the conduction of impulses distally along the full length of the small intestine, but receive only a minor input from calbindin-immunoreactive primary afferent neurons.  相似文献   

7.
Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guineapig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin-and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.  相似文献   

8.
1. Synaptic responses of uropod motoneurons and interneurons to magnetic field stimulation of the statocyst were studied in a whole animal preparation using intracellular recording and staining techniques to characterize the descending statocyst pathways controlling uropod steering behavior. 2. When the animal was engaged in abdominal postural movement, all uropod motoneurons received sustained excitatory input. Motoneurons which were to be activated during steering behavior showed excitatory responses to the stimulus superimposed on the sustained excitation. In the resting state, they showed weaker responses or no visible responses to the same stimulation. 3. Motoneurons to be suppressed during steering showed inhibitory responses to the stimulus only during abdominal movement. These included both active inhibition as well as disfacilitatory suppression of excitatory input to the motoneurons. 4. Premotor nonspiking interneurons, like motoneurons, showed greater responses to the stimulus during abdominal movement than at rest. Unlike motoneurons, however, they did not always receive sustained input during abdominal movement. 5. Descending axons which responded to statocyst stimulation independent of abdominal movement were found in the 4th and 5th abdominal ganglia. Other axons showed greater responses during abdominal movement than at rest. 6. A number of intersegmental descending interneurons with cell bodies and dendrites in the 4th or 5th ganglion were found to receive excitatory inputs from both the statocyst and the motor system controlling abdominal posture. These responses were found to summate with each other to generate spikes. 7. Statocyst signals are thus transmitted to uropod motoneurons by two types of descending pathways: one whose operation is affected by the abdominal system and the other which operates independently. The former pathway functions by recruiting intersegmental abdominal interneurons and makes stronger connections with motoneurons than the latter.  相似文献   

9.
Intracellular responses of motion-sensitive visual interneurons were recorded from the lobula complex of the mantis, Tenodera aridifolia. The interneurons were divided into four classes according to the response polarity, spatial tuning, and directional selectivity. Neurons of the first class had small, medium, or large receptive fields and showed a strong excitation in response to a small-field motion such as a small square moving in any direction (SF neurons). The second class neurons showed non-directionally selective responses: an excitation to a large-field motion of gratings in any direction (ND neurons). Most ND neurons had small or medium-size receptive fields. Neurons of the third class had large receptive fields and exhibited directionally selective responses: an excitation to a large-field motion of gratings in preferred direction and an inhibition to a motion in opposite, null direction (DS neurons). The last class neurons had small receptive fields and showed inhibitory responses to a moving square and gratings (I neurons). The functional roles of these neurons in prey recognition and optomotor response were discussed.  相似文献   

10.
In order to understand the neural mechanisms of pheromone-oriented walking in male silkworm moths, Bombyxmori, we have characterized olfactory responses and three-dimensional structure of two clusters (Group-I, Group-II) of descending interneurons in the brain by intracellular recording and staining with lucifer yellow. Neurons were imaged with laser-scanning confocal microscopy. Group-I and Group-II descending interneurons were classified into three morphological types, respectively. In response to the sex pheromone, bombykol, Type-A Group-I descending interneurons showed characteristic flipflopping activity. The Group-I descending interneurons had dendritic arborizations in the lateral accessory lobe and varicose profiles in the posterior-lateral part of the suboesophageal ganglion where the dendritic arborizations of a neck motor neuron (i.e., cv1 NMN) reside. Other types of Group-I descending interneurons exhibited long-lasting suppression of firing. The pheromonal responses of Group-II descending interneurons fell into two classes: brief excitation and brief inhibition. Type-A Group-II descending interneurons showing brief excitation had blebby processes in the posterior-lateral part of the suboesophageal ganglion. Type-B and Type-C Group-II descending interneurons did not have varicose profiles there. Therefore, the neck motor neuron regulating head turning, which accompanies the pheromone-oriented walking, may be controlled by these two types, flipflop and phasic excitation, of descending activity patterns. Accepted: 2 November 1998  相似文献   

11.
We attempt to summarize the properties of cortical synaptic connections and the precision with which they select their targets in the context of information processing in cortical circuits. High-frequency presynaptic bursts result in rapidly depressing responses at most inputs onto spiny cells and onto some interneurons. These 'phasic' connections detect novelty and changes in the firing rate, but report frequency of maintained activity poorly. By contrast, facilitating inputs to interneurons that target dendrites produce little or no response at low frequencies, but a facilitating-augmenting response to maintained firing. The neurons activated, the cells they in turn target and the properties of those synapses determine which parts of the circuit are recruited and in what temporal pattern. Inhibitory interneurons provide both temporal and spatial tuning. The 'forward' flow from layer-4 excitatory neurons to layer 3 and from 3 to 5 activates predominantly pyramids. 'Back' projections, from 3 to 4 and 5 to 3, do not activate excitatory cells, but target interneurons. Despite, therefore, an increasing complexity in the information integrated as it is processed through these layers, there is little 'contamination' by 'back' projections. That layer 6 acts both as a primary input layer feeding excitation 'forward' to excitatory cells in other layers and as a higher-order layer with more integrated response properties feeding inhibition to layer 4 is discussed.  相似文献   

12.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

13.
The data described here complete the principal components of the cockroach wind-mediated escape circuit from cercal afferents to leg motor neurons. It was previously known that the cercal afferents excite ventral giant interneurons which then conduct information on wind stimuli to thoracic ganglia. The ventral giant interneurons connect to a large population of interneurons in the thoracic ganglia which, in turn, are capable of exciting motor neurons that control leg movements. Thoracic interneurons that receive constant short latency inputs from ventral giant interneurons have been referred to as type A thoracic interneurons (TIAs). In this paper, we demonstrate that the motor response of TIAs occurs in adjacent ganglia as well as in the ganglion of origin for the TIA. We then describe the pathway from TIAs to motor neurons in both ganglia. Our observations reveal complex interactions between thoracic interneurons and leg motor neurons. Two parallel pathways exist. TIAs excite leg motor neurons directly and via local interneurons. Latency and amplitude of post-synaptic potentials (PSPs) in motor neurons and local interneurons either in the ganglion of origin or in adjacent ganglia are all similar. However, the sign of the responses recorded in local interneurons (LI) and motor neurons varies according to the TIA subpopulation based on the location of their cell bodies. One group, the dorsal posterior group, (DPGs) has dorsal cell bodies, whereas the other group, the ventral median cells, (VMC) has ventral cell bodies. All DPG interneurons either excited postsynaptic cells or failed to show any connection at all. In contrast, all VMC interneurons either inhibited postsynaptic cells or failed to show any connection. It appears that the TIAs utilize directional wind information from the ventral giant interneurons to make a decision on the optimal direction of escape. The output connections, which project not only to cells within the ganglion of origin but also to adjacent ganglia and perhaps beyond, could allow this decision to be made throughout the thoracic ganglia as a single unit. However, nothing in these connections indicates a mechanism for making appropriate coordinated leg movements. Because each pair of legs plays a unique role in the turn, this coordination should be controlled by circuits dedicated to each leg. We suggest that this is accomplished by local interneurons between TIAs and leg motor neurons.  相似文献   

14.
Receåfindings indicate that cockroaches escape in response to tactile stimulation as well as they do in response to the classic wind puff stimulus. The thoracic interneurons that receive inputs from ventral giant interneurons also respond to tactile stimulation and therefore, represent a potential site of convergence between wind and tactile stimulation as well as other sensory modalities. In this article, we characterize the tactile response of these interneurons, which are referred to as type-A thoracic interneurons (TIAs). In response to tactile stimulation of the body cuticle, TIAs typically respond with a short latency biphasic depolarization which often passes threshold for action potentials. The biphasic response is not typical of responses to wind stimulation nor of tactile stimulation of the antennae. It is also not seen in tactile responses of thoracic interneurons that are not part of the TIA group. The responses of individual TIAs to stimulation of various body locations were mapped. The left-right directional properties of TIAs are consistent with their responses to wind puffs from various different directions. Cells that respond equally well to wind from the left and right side also respond equally well to tactile stimuli on the left and right side of the animal's body. In contrast, cells that are biased to wind on one side are also biased to tactile stimulation on the same side. In general, tactile responses directed at body cuticle are phasic rather than tonic, occurring both when the tactile stimulator is depressed and released. The response reflects stimulus strength and follows repeated stimulation quite well. However, the first phase of the biphasic response is more robust during high-frequency stimulation than the second phase. TIAs also respond to antennal stimulation. However, here the response characteristics are complicated by the fact that movement of either antenna evokes descending activity in both left and right thoracic connectives. The data suggest that the TIAs make up a multimodal site of sensory convergence that is capable of generating an oriental escape turn in response to any one of several sensory cues. 1994 John Wiley & Sons, Inc.  相似文献   

15.
We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillator interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike-mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance-based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Summary Topological organization of identified neurons has been characterized for the larval, pupal and imaginal suboeosphageal neuropil of the meal-worm beetleTenebrio molitor. Neuronal fate mapping allows identification of individually persisting neurons in the metamorphosing suboesophageal ganglion ofTenebrio. Analysis was performed on interneurons characterized by serotonin and CCAP (crustacean cardioactive peptide) immunohistochemistry, on motoneurons that innervate the dorsal and ventral longitudinal muscles, and on suboesophageal descending neurons. All these different populations of neurons show topologically invariant features throughout metamorphosis. Motoneurons, interneurons, and descending suboesophageal neurons of the imaginal suboeosphageal ganglion embody individually persisting larval interneurons. Impacts for a functional interpretation of the neuronal architecture of the suboesophageal ganglion are discussed.  相似文献   

17.
Sensory responses of various descending brain neurons, their modulation during standing or walking, and the correlation of such modulations with stimulus category were investigated. Stimuli involving (1) static or moving grating, artificial calling songs with (2) the conspecific and (3) an ultrasound frequency, or (4) air puffs to the cerci were presented to crickets walking in an open loop paradigm. The morphology of different descending interneurons in the brain and thoracic ganglia is described, together with their respective response properties. Some cells were excited, others inhibited by, and only some were directionally sensitive to the optomotor stimulus. Responses to artificial calling songs with conspecific and ultrasound frequency differed in the way the syllables of the sounds were coded and in the representation of ipsi- and contralateral stimuli. The majority of cells tested responded to air puffs. Stimulus representation differed among individuals of morphological types, but was very similar among individual interneurons of the morphologically homogenous i5 group. Stimuli approximating predators (air puffs, ultrasound) were usually represented during walking and standing; however, most neurons only responded to the other stimuli only during walking. These results indicate that the same neurons show different responses, and may have different functions, under different behavioral conditions.  相似文献   

18.
Rowell CH 《Tissue & cell》1991,23(2):271-276
1. Thirty-seven pairs of mesothoracic interneurons respond selectively to visual or ocellar stimuli corresponding to deviations from course in flight, expressed as angular rotation around the three spatial axes. 2. Sensitivities to roll and yaw are very strongly associated. All interneurons showing a directional preference for yaw rotations showed the same preference for roll rotations. A few roll-sensitive cells were not directionally sensitive to yaw. Some interneurons respond exclusively to pitch rotations, most to both pitch and roll/yaw. 3. Approximately equal numbers of interneurons prefer pitch up, pitch down, roll/yaw to the ipsilateral side and roll/yaw to the contralateral side. All four possible combinations of pitch (up or down) with roll/yaw (ipsilateral or contralateral) preferences occur with equal probability. 4. No relationship between neuronal structure and directional properties could be discerned. 5. The average latency of the ocellar EPSPs recorded in the interneurons is not significantly different from the average latency of the ocellar spike in the descending neurons (at the same temperature and in the same ganglion). The average ocellar IPSP latency is 8.5 ms longer. The data support the hypothesis that most EPSPs are derived from monosynaptic inputs from the DNs, and most IPSPs from polysynaptic inputs. A few EPSPs are also derived from polysynaptic inputs. 6. Most of these neurons are sensitive to wind, at least some directionally so, in a manner functionally compatible with their visual or ocellar directionality, and most are excited. Two neurons respond to movement of small objects in the visual field, and 5 to high frequency sound.  相似文献   

19.
The hatchling frog tadpole provides a simple preparation where the fundamental roles for inhibition in the central nervous networks controlling behaviour can be examined. Antibody staining reveals the distribution of at least ten different populations of glycinergic and GABAergic neurons in the CNS. Single neuron recording and marker injections have been used to study the roles and anatomy of three types of inhibitory neuron in the swimming behaviour of the tadpole. Spinal commissural interneurons control alternation of the two sides by producing glycinergic reciprocal inhibition. By interacting with the special membrane properties of excitatory interneurons they also contribute to rhythm generation through post-inhibitory rebound. Spinal ascending interneurons produce recurrent glycinergic inhibition of sensory pathways that gates reflex responses during swimming. In addition their inhibition also limits firing in CPG neurons during swimming. Midhindbrain reticulospinal neurons are excited by pressure to the head and produce powerful GABAergic inhibition that stops swimming when the tadpole swims into solid objects. They may also produce tonic inhibition while the tadpole is at rest that reduces spontaneous swimming and responsiveness of the tadpole, keeping it still so it is not noticed by predators.  相似文献   

20.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号