首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Integrative and conjugative elements (ICEs), a.k.a. conjugative transposons, are mobile genetic elements involved in many biological processes, including pathogenesis, symbiosis and the spread of antibiotic resistance. Unlike conjugative plasmids that are extra‐chromosomal and replicate autonomously, ICEs are integrated in the chromosome and replicate passively during chromosomal replication. It is generally thought that ICEs do not replicate autonomously. We found that when induced, Bacillus subtilis ICEBs1 undergoes autonomous plasmid‐like replication. Replication was unidirectional, initiated from the ICEBs1 origin of transfer, oriT, and required the ICEBs1‐encoded relaxase NicK. Replication also required several host proteins needed for chromosomal replication, but did not require the replicative helicase DnaC or the helicase loader protein DnaB. Rather, replication of ICEBs1 required the helicase PcrA that is required for rolling circle replication of many plasmids. Transfer of ICEBs1 from the donor required PcrA, but did not require replication, indicating that PcrA, and not DNA replication, facilitates unwinding of ICEBs1 DNA for horizontal transfer. Although not needed for horizontal transfer, replication of ICEBs1 was needed for stability of the element. We propose that autonomous plasmid‐like replication is a common property of ICEs and contributes to the stability and maintenance of these mobile genetic elements in bacterial populations.  相似文献   

2.
Boundaries of the nicking region for the F plasmid transfer origin, oriT   总被引:1,自引:0,他引:1  
The extent of the F plasmid oriT nicking region was determined from the properties of successive substitution mutations in the region from base pair 121 to base pair 174 and from KMnO4 probing of DNA structural distortions induced in vivo by tra gene products. Nicking and transfer assays indicated that the left margin of oriT Wes predominantly at the nick site, and that the nicking domain primarily lies within 17bp to the right of the nick. Some mutants that were proficient for nicking showed reduced frequencies of termination, indicating that oriT nicking does not guarantee efficient termination. DNA in the vicinity of the nick (G137, T138, G140, and T141 on the nicked strand) showed elevated sensitivity to KMnO4 when tra gene products were present in the donor. Bases C145, C146, C147, C149, and G150 on the un-nicked strand also became more sensitive to oxidation under tra+ conditions. The bases preferentially oxidized by KMnO4 lie within the nicking domain, as defined by the substitution mutants, and they include dinucleotides that can produce kinks in the DNA. Base pairs in the nicking region are calculated to be more thermodynamically stable than base pairs in the flanking regions.  相似文献   

3.
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.  相似文献   

4.
5.
Integrative and conjugative elements (ICEs) are important drivers of horizontal gene transfer in prokaryotes. They are responsible for antimicrobial resistance spread, a major current health concern. ICEs are initially processed by relaxases that recognize the binding site of oriT sequence and nick at a conserved nic site. The ICESt3/Tn916/ICEBs1 superfamily, which is widespread among Firmicutes, encodes uncanonical relaxases belonging to a recently identified family called MOBT. This family is related to the rolling circle replication initiators of the Rep_trans family. The nic site of these MOBT relaxases is conserved but their DNA binding site is still unknown. Here, we identified the bind site of RelSt3, the MOBT relaxase from ICESt3. Unexpectedly, we found this bind site distantly located from the nic site. We revealed that the binding of the RelSt3 N-terminal HTH domain is required for efficient nicking activity. We also deciphered the role of RelSt3 in the initial and final stages of DNA processing during conjugation. Especially, we demonstrated a strand transfer activity, and the formation of covalent DNA-relaxase intermediate for a MOBT relaxase.  相似文献   

6.
Protein MobM, the relaxase involved in conjugative transfer of the streptococcal plasmid pMV158, is the prototype of the MOBV superfamily of relaxases. To characterize the DNA-binding and nicking domain of MobM, a truncated version of the protein (MobMN199) encompassing its N-terminal region was designed and the protein was purified. MobMN199 was monomeric in contrast to the dimeric form of the full-length protein, but it kept its nicking activity on pMV158 DNA. The optimal relaxase activity was dependent on Mn2+ or Mg2+ cations in a dosage-dependent manner. However, whereas Mn2+ strongly stabilized MobMN199 against thermal denaturation, no protective effect was observed for Mg2+. Furthermore, MobMN199 exhibited a high affinity binding for Mn2+ but not for Mg2+. We also examined the binding-specificity and affinity of MobMN199 for several substrates of single-stranded DNA encompassing the pMV158 origin of transfer (oriT). The minimal oriT was delimited to a stretch of 26 nt which included an inverted repeat located eight bases upstream of the nick site. The structure of MobMN199 was strongly stabilized by binding to the defined target DNA, indicating the formation of a tight protein–DNA complex. We demonstrate that the oriT recognition by MobMN199 was highly specific and suggest that this protein most probably employs Mn2+ during pMV158 transfer.  相似文献   

7.
Transfer of plasmid DNA during bacterial conjugation begins at a specific site: the origin of transfer (oriT). The oriT region of the broad host range plasmid RK2 is located on a 250 bp fragment. Deletions involving either end of this region reduce transfer function, indicating that an extended sequence is required for optimal oriT activity. The single-strand nick induced by the RK2 DNA-protein relaxation complex is located adjacent to the 19 bp inverted repeat within the minimal oriT sequence. These results provide strong evidence that the plasmid relaxation event induced in vitro represents the nicking reaction that initiates DNA transfer at oriT during conjugation.  相似文献   

8.
The replication of the 11 kb conjugative multicopy Streptomyces plasmid pSN22 was analyzed. Mutation and complementation analyses indicated that the minimal region essential for plasmid replication was located on a 1.9 kb fragment of pSN22, containing a trans-acting element encoding a replication protein and a cis-acting sequence acting as a replication origin. Southern hybridization showed that minimal replicon plasmids accumulated much more single-stranded plasmid molecules than did wild-type pSN22. Only one strand was accumulated. A 500 by fragment from the pSN22 transfer region was identified which reduced the relative amount of single-stranded DNA, when added in the native orientation to minimal replicon plasmids. This 500 by DNA sequence may be an origin for second-strand synthesis. It had no effect on the efficiency of co-transformation, plasmid incompatibility, or stability. The results indicate that pSN22 replicates via single-stranded intermediates by a rolling circle mechanism.  相似文献   

9.
Initiation and termination of DNA transfer at F plasmid oriT   总被引:6,自引:2,他引:4  
DNA sequences within the F plasmid transfer origin (oriT) were tested for their ability to initiate or terminate conjugal transfer. Mutant and wild-type oriT elements were cloned as direct repetitions flanking the rpsL gene on a pBR322-based plasmid, and the frequency of deletion of this segment during matings sponsored by F’lac (F42) with streptomycin-resistant recipients was measured. Shortened oriT elements that lacked adjacent TraM-binding sites allowed efficient initiation and termination. Some truncated orir segments lacking the TraM-binding sites and the TraY-binding site, sbyA, initiated transfer inefficiently, but nevertheless promoted efficient termination. Removal of TraM-, TraY-, and IHF-binding sites severely reduced both nicking and termination. Point mutations that previously had been reported to prevent nicking caused reduced levels of both initiation and termination. These results indicate that regions of oriT supporting initiation are more extensive than those needed for termination, although some regions are required for both. Moreover, termination can be effective for some mutant loci that do not support efficient nicking.  相似文献   

10.
In Gram-negative bacteria, the general mechanism of conjugal plasmid transfer, which is probably similar for many different groups of plasmids, involves the transfer of a single plasmid DNA strand with 5′ to 3′ polarity. Transfer is initiated by nicking of the duplex DNA at a particular site, i.e. the origin of transfer (oriT). We constructed plasmids containing two directly repeated copies of oriT, derived from the broad-host-range plasmid R1162 and flanking the lac operator. The number of lacO copies in the plasmid after transfer could be determined from the colour of transconjugant colonies on medium containing X-Gal. When the oriTs were mutated to prevent initiation and termination of transfer at the same oriTs, almost all of the transconjugant cells contained greater-than-unit-length plasmids with two copies of lacO and three copies of oriT. We show that these molecules were generated by an intramolecular, conjugation dependent mechanism unlikely to depend solely on a pre-existing population of circular or linear multimers in donor cells. We propose that the greater-than-unit-length molecules were instead generated by a rolling-circle mechanism of DNA replication.  相似文献   

11.

Background

Bacterial conjugation is a mechanism for horizontal DNA transfer between bacteria which requires cell to cell contact, usually mediated by self-transmissible plasmids. A protein known as relaxase is responsible for the processing of DNA during bacterial conjugation. TrwC, the relaxase of conjugative plasmid R388, is also able to catalyze site-specific integration of the transferred DNA into a copy of its target, the origin of transfer (oriT), present in a recipient plasmid. This reaction confers TrwC a high biotechnological potential as a tool for genomic engineering.

Methodology/Principal Findings

We have characterized this reaction by conjugal mobilization of a suicide plasmid to a recipient cell with an oriT-containing plasmid, selecting for the cointegrates. Proteins TrwA and IHF enhanced integration frequency. TrwC could also catalyze integration when it is expressed from the recipient cell. Both Y18 and Y26 catalytic tyrosil residues were essential to perform the reaction, while TrwC DNA helicase activity was dispensable. The target DNA could be reduced to 17 bp encompassing TrwC nicking and binding sites. Two human genomic sequences resembling the 17 bp segment were accepted as targets for TrwC-mediated site-specific integration. TrwC could also integrate the incoming DNA molecule into an oriT copy present in the recipient chromosome.

Conclusions/Significance

The results support a model for TrwC-mediated site-specific integration. This reaction may allow R388 to integrate into the genome of non-permissive hosts upon conjugative transfer. Also, the ability to act on target sequences present in the human genome underscores the biotechnological potential of conjugative relaxase TrwC as a site-specific integrase for genomic modification of human cells.  相似文献   

12.
To construct shuttle vectors based on an endogenous replicon, we isolated a small cryptic plasmid (pLP1) from Lactobacillus plantarum CCM 1904. The nucleotide sequence (2093 bp, 38.25 GC mol%) revealed one major open reading frame encoding for a 317 amino acid protein (Rep). Comparisons with proteins encoded by other Gram-positive bacteria plasmids strongly suggest that the protein encoded by pLP1 has a replicative role. The presence of a consensus sequence including a tyrosine residue known to be the replication protein binding site to the DNA (in phage φX174) strengthens this hypothesis. The DNA sequence contains also a sequence similar to the pC194 origin nick sequence, which initiates the plasmid replication at the plus origin, characteristic of plasmids which replicate following a rolling circle mechanism via single-stranded DNA intermediates. A set of 13 direct repeats of 17 bp could be involved in the expression of the incompatibility or in the copy number control as in the other plasmids. A promoter sequence located at the rep 5′ region has been identified and is functional in Bacillus subtilis.  相似文献   

13.
Previous analysis of the Tra1 region of the conjugative element pRS01 from Lactococcus lactis subsp. lactis ML3 suggested that an origin of transfer (oriT) was present. Deletion derivatives of this cloned Tra1 region were assayed for mobilization in the presence of the wild-type pRS01 element in trans. The pRS01 oriT was localized to a 446-nucleotide segment in the intergenic region between open reading frames ltrD and ltrE. Sequence analysis of this region revealed a cluster of direct and inverted repeat structures characteristic of oriT regions associated with other conjugative systems.  相似文献   

14.
Summary Mobilization of the plasmid ColE1 from cells containing a conjugative plasmid (such as F) requires the synthesis of ColE1 mob proteins, and the presence, in cis, of bom (basis of mobility), a region of ColE1 containing the origin of transfer (oriT). The process of ColE1 transfer is thought to resemble that of the conjugative plasmid F, although the plasmids share little sequence homology. In F, conjugation is preceded by a strand-specific nicking event at oriT. The nicked strand is then conducted to the recipient with the 5 end leading. This is believed also to occur with ColE1, but direct biochemical confirmation has been precluded by its small size (6.65 kb). To test this hypothesis genetically, a novel method, using a dv-based vector, has been devised to site-specifically integrate bom (or any other cloned sequence) into the chromosome of Escherichia coli. When provided with suitable mobilizing plasmids, such strains were found to transfer the chromosome in a polar way. From these data, the orientation of transfer of ColE1 was deduced and shown to be analogous to F.  相似文献   

15.
Transfer of the F plasmid between conjugating Escherichia coli cells has been assumed to require endonucleolytic cleavage at a specific site (oriT) on a specific strand of the F molecule. Using a lambda transducing phage which contains oriT we have detected this nicking process in vivo. Nicking of DNA occurred in the strand that included the “transferred” F strand and at a location within the transducing segment consistent with all previous genetic and restriction enzyme cleavage data on the position of oriT in F. Genetic study of the nicking process using Flac tra? point and deletion mutants, and also λtra phages which carried various parts of the transfer region, indicated that the products of two transfer operon genes, traY and the previously unidentified gene traZ, were directly involved in nicking at oriT. The product of traJ was also required for nicking, but the possibility that this was solely due to the regulatory function of the traJ product could not be excluded. The plasmid specificities of oriT, traY and traZ between F and the related F-like plasmids R1-19 and R100-1 were investigated using the λoriT nicking system, and shown to be consistent with those determined in genetic complementation tests. The differences in specificity observed imply that the oriT sequence of F differs from those of R1-19 and R100-1.The products of the traM and traI genes are known to be required for the initiation of DNA transfer; their possible roles in modulating the activity of the traY Z endonuclease are discussed.  相似文献   

16.
Plasmids of the pT181 family encode initiator proteins that act as dimers during plasmid rolling circle (RC) replication. These initiator proteins bind to the origin of replication through a sequence-specific interaction and generate a nick at the origin that acts as the primer for RC replication. Previous studies have demonstrated that the initiator proteins contain separate DNA binding and nicking-closing domains, both of which are required for plasmid replication. The tyrosine residue at position 191 of the initiator RepC protein of pT181 is known to be involved in nicking at the origin. We have generated heterodimers of RepC that consist of different combinations of wild type, DNA binding, and nicking mutant monomers to identify the role of each of the two monomers in RC replication. One monomer with DNA binding activity was sufficient for the targeting of the initiator to the origin, and the presence of Tyr-191 in one monomer was sufficient for the initiation of replication. On the other hand, a dimer consisting of one monomer defective in DNA binding and the other defective in origin nicking failed to initiate replication. Our results demonstrate that the monomer that promotes sequence-specific binding to the origin must also nick the DNA to initiate replication. Interestingly, whereas Tyr-191 of the initiator was required for nicking at the origin to initiate replication, it was dispensable for termination, suggesting that alternate amino acids in the initiator may promote termination but not initiation.  相似文献   

17.
The Escherichia coli conjugative plasmid Flac has a restricted host range, in that transfer to Pseudomonas aeruginosa is not detectable. The molecular basis for this host-range restriction was studied by a separate comparison of the replication and conjugation systems of Flac with those of the broad host-range plasmid RK2. The origin of transfer of Flac (oriTF) was cloned onto a small RK2 replicon. The hybrid plasmid, pDG2906, could be transferred efficiently by both the Flac and RK2 conjugation systems to an E. coli recipient. The Flac conjugation system was able to transfer pDG2906 to P. aeruginosa, but only at a frequency of 10?4 of that of the RK2 conjugation system. A second hybrid plasmid, containing the replication region of Flac with the transfer region of RK2, could not be established in P. aeruginosa. These results show that Flac is able to mediate low frequency transfer to P. aeruginosa, and that the lack of replication in Pseudomonas is ultimately responsible for the restricted host range.  相似文献   

18.
Conjugal transfer of Bacteroides mobilizable transposon Tn4555 was examined with an Escherichia coli-based assay system. It was shown that mobilization required the cis-acting oriTTn region and that the Tn4555 mobATn gene and RK231 must be present in trans. With alkaline agarose gel electrophoresis and filter blot hybridizations, it was shown that at oriTTn there was a site- and strand-specific cleavage event that was dependent on mobATn. The 5′ end of this cleavage site was mapped by primer extension, and the nucleotide sequence surrounding the site had homology to a family of oriT nick sites found in mobilizable plasmids of gram-positive bacteria. Removal of the nick site by deletion of 18 bp surrounding the site resulted in a significant loss of transfer activity.  相似文献   

19.
We have investigated bacteriophage φX174 RF 2 DNA replication by electron microscopy. Three different, types of replicative intermediates were observed: rolling circles, partially duplex DNA circles and structures consisting of two DNA circles connected at a single point.Rolling circles with a single-stranded or partially double-stranded DNA tail were both observed. After cleavage of the rolling circles with the restriction endonuclease from Providentia stuartii 164 (PstI) the startpoint of rolling circle replication could be located at 21 map units from the PstI cleavage site in agreement with the previously determined position of the origin of φX RF DNA replication.Partially duplex DNA circles consist of circular viral DNA strands and incomplete complementary DNA strands. After cleavage of these molecules with PstI information about the startpoints of the synthesis of the complementary DNA strand was obtained.The connected DNA circles always contain one completely double-stranded DNA circle whereas the other circle consists of either single-stranded, partially duplex or completely duplex DNA.Part of the duplex-to-duplex DNA circles represent the well-known figure eight or catenated circular dimers. The other connected DNA circles presumably represent replication intermediates which arise by the association of the end of the genome length tail of the rolling circle with the origin-terminus region. This is suggested by the fact that the point of contact between the two DNA circles is located at approximately 21 map units from the Pst1 cleavage site, i.e. at the origin-terminus region of the φX genome. The connected DNA circles may be intermediates in the circularization and cleavage of the genome-length tail of the rolling circles in vivo.A model for φX174 RF DNA replication in vivo summarizing the data obtained by biochemical (Baas et al., 1978) and electron microscopic analysis of replicative intermediates is presented (Fig. 9).  相似文献   

20.
The replication of the 11 kb conjugative multicopy Streptomyces plasmid pSN22 was analyzed. Mutation and complementation analyses indicated that the minimal region essential for plasmid replication was located on a 1.9 kb fragment of pSN22, containing a trans-acting element encoding a replication protein and a cis-acting sequence acting as a replication origin. Southern hybridization showed that minimal replicon plasmids accumulated much more single-stranded plasmid molecules than did wild-type pSN22. Only one strand was accumulated. A 500 by fragment from the pSN22 transfer region was identified which reduced the relative amount of single-stranded DNA, when added in the native orientation to minimal replicon plasmids. This 500 by DNA sequence may be an origin for second-strand synthesis. It had no effect on the efficiency of co-transformation, plasmid incompatibility, or stability. The results indicate that pSN22 replicates via single-stranded intermediates by a rolling circle mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号