首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolism-dependent inactivators of 3-ketothiolase I and carnitine acyltransferase I (CAT I) have been used to study the oxidation of fatty acids in intact hepatocytes. 2-Bromooctanoate inactivates mitochondrial and peroxisomal 3-ketothiolases I in a time-dependent manner. During the first 5 min of incubation, inactivation of 3-ketothiolase in mitochondria is five times faster than its inactivation in peroxisomes. Almost complete inactivation of 3-ketothiolase I in both types of organelle is achieved after incubation with 1 mM 2-bromooctanoate for 40 min. The inactivation is not affected by preincubating hepatocytes with 20 microM tetradecylglycidate (TDGA), an inactivator of CAT I, under conditions which cause greater than 95% inactivation of CAT I. 2-Bromododecanoate (1 mM) causes 60% inactivation of mitochondrial and peroxisomal 3-ketothiolases I in 40 min. These inactivations are greatly reduced by preincubating hepatocytes with 20 microM TDGA, demonstrating that 2-bromododecanoate enters both mitochondria and peroxisomes via its carnitine ester. 2-Bromopalmitate (1 mM) causes less than 5% inactivation of mitochondrial and peroxisomal 3-ketothiolases I in 40 min, but causes 95% inactivation of CAT I during this time. Incubation of hepatocytes with 10-200 microM 2-bromopalmitoyl-L-carnitine causes inactivation of mitochondrial and peroxisomal 3-ketothiolases I at similar rates. This inactivation is decreased by palmitoyl-D-carnitine during the first 5 min of incubation. Pretreating hepatocytes with 20 microM TDGA does not affect the inactivation of mitochondrial or peroxisomal 3-ketothiolase I by 2-bromopalmitoyl-L-carnitine. These results demonstrate that in intact hepatocytes, peroxisomes oxidize fatty acids of medium-chain length by a carnitine-independent mechanism, whereas they oxidize long-chain fatty acids by a carnitine-dependent mechanism.  相似文献   

2.
Evidence supporting a common peroxisomal beta-oxidation pathway for the coenzyme A thioesters of medium-chain-length dicarboxylic acids (DCn-CoA) and monocarboxylic acids (MCn-CoA) has been obtained. Using the mono-CoA esters of dodecanedioic acid (DC12-CoA) and lauroyl-CoA (MC12-CoA) as substrates, parallel inductions of activities and parallel increases in specific activities during purification of peroxisomal fatty acyl-CoA oxidase (EC 1.3.99.3) from rat liver after di(2-ethylhexyl)phthalate treatment were seen. The purified enzyme was used for antiserum production in rabbits; antiserum specificity was verified by immunoblot analysis. Coincident losses of oxidase activities with MC12-CoA and DC12-CoA were found in immunotitration experiments with rat liver homogenates, supporting the hypothesis that peroxisomal fatty acyl-CoA oxidase is solely responsible for the oxidation of medium-chain length dicarboxylic acid substrates. Kinetic studies with purified enzyme using the mono-CoA esters of sebacic (DC10-CoA), suberic (DC8-CoA), and adipic (DC6-CoA) acids along with DC12-CoA revealed substrate inhibition. Although these substrates exhibited similar calculated Vmax values, with decreasing chain length, the combination of increasing Km values and decreasing substrate inhibition constant (Ki) caused the maximum obtainable velocity to decrease. These studies offer an explanation for the previously observed limit of the ability of peroxisomes to chain-shorten dicarboxylates and increased urinary excretion of adipic acid when peroxisomal oxidation of dicarboxylic acids is enhanced.  相似文献   

3.
The effects of riboflavin deficiency on hepatic peroxisomal and mitochondrial palmitoyl-CoA oxidation were examined in weanling Wistar-strain male rats. The specific activities of peroxisomal catalase and palmitoyl-CoA-dependent NAD+ reduction were not affected by up to 10 weeks of riboflavin deficiency. In contrast, the specific activity of mitochondrial carnitine-dependent palmitoyl-CoA oxidation was depressed by 75% at 10 weeks of deficiency. The amount of peroxisomal protein per g of liver was not affected by riboflavin deficiency, whereas, expressed per liver, both riboflavin-deficient and pair-fed controls showed decreased peroxisomal protein compared with controls fed ad libitum. Hepatic mitochondria, but not peroxisomes, were sensitive to riboflavin deficiency.  相似文献   

4.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

5.
The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.  相似文献   

6.
Developmental changes in fatty acid oxidation system of rat liver peroxisomes were studied to compare with that of mitochondria. More apparent enhancement of peroxisomal palmitoyl-CoA oxidase was observed than mitochondrial palmitoyl-CoA dehydrogenase during prenatal (20-day fetal) to neonatal (1-day after birth) period. The characteristics of peroxisomal enzymes, fatty acyl-CoA oxidase and carnitime acyltransferase, on the bases of substrate specificities, were rapidly established within the 1 day after birth accompanied by the marked enhancement of these activities. These findings indicate that peroxisomal fatty acid oxidation system plays an important role for early growth of neonatal rats; this system may contribute to supplying short- to medium-chain fatty acyl-CoA and NADH2 for mitochondrial energy formation system.  相似文献   

7.
The intestinal mucosa metabolizes fatty acids differently when presented to the lumenal or basolateral membrane. Expression of both liver and intestinal fatty acid binding proteins (L- and I-FABPs) uniquely in the enterocyte offers a possible explanation of this phenomenon. An organ explant system was used to analyze the relative binding of fatty acids to each protein. More fatty acid was bound to L-FABP than to I-FABPs (28% vs. 6% of cytosolic radioactivity), no matter on which side the fatty acid was added. However, a 2-3-fold increase in fatty acid binding to the intestinal paralog was noted after apical addition of palmitic or oleic acid in mucosa from chow fed rats. When oleic acid was added apically, a 1.4-fold increase in binding to I-FABP was observed in mucosa derived from chronically fat fed rats, consistent with the previously observed 50% increase in the content of that protein. Immunocytochemical localization of both FABPs in vivo demonstrated an apical cytoplasmic localization in the fasting state, and redistribution to the entire cytoplasm after fat feeding. These data are consistent with the hypothesis that I-FABP may contribute to the metabolic compartmentalization of apically presented fatty acids in the intestine.  相似文献   

8.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

9.
肝型脂肪酸结合蛋白研究进展   总被引:1,自引:0,他引:1  
肝型脂肪酸结合蛋白(liver fatty acid binding protein,L-FABP)是脂肪酸结合蛋白(fatty acid binding proteins,FABPs)家族重要的成员,在肝脏、小肠、肾脏等组织中均有表达。L-FABP在不饱和脂肪酸、饱和脂肪酸、胆固醇、胆汁酸等转运过程中扮演重要角色。目前研究显示L-FABP在脂肪肝、肝硬化以及肝癌发生发展中起到重要作用,并有望作为肝损伤的早期检测指标。此外,新近研究发现尿中L-FABP水平还可以用于预测1型糖尿病患者的临床结局。在2型糖尿病中,尿中L-FABP与糖尿病性肾病的病程有密切关系。主要就L-FABP的特性、结构及其与疾病的关系做一综述。  相似文献   

10.
The apparent paradox of aerobic glycolysis has been investigated in bone and in cartilage. A new cytochemical procedure for hydroxyacyl dehydrogenase (HOAD) activity showed that the maximal activity of this enzyme in both tissues was equivalent to the maximal activity of glyceraldehyde 3-phosphate dehydrogenase (GAPD). The sum of these activities gave a measure of the maximum amount of acetyl-coenzyme A that could be produced. In these tissues, but not in liver which does not exhibit aerobic glycolysis, this summed value exceeded the maximal activity of succinate dehydrogenase (SDH). Consequently, it suggested that where fatty acid oxidation is sufficient to supply all the acetyl-coenzyme A required for the Krebs' cycle, that derived from fatty acid oxidation may inhibit pyruvate dehydrogenase causing accumulation of pyruvate which must be converted to lactate if pentose-shunt activity is to be maintained.  相似文献   

11.
The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using [1-14C]butyric acid and [1-14C]lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of [14C]lignoceric acid into primary bile acids was approximately four times higher than that of [14C]butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo [F. Hashimoto and H. Hayashi (1987) Biochim. Biophys. Acta 921, 142-150]. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both [14C]lignoceric acid and [14C]butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.  相似文献   

12.
A number of isoprenoids (e.g. pristanic acid and the side chains of fat soluble-vitamins) is degraded or shortened via beta oxidation. We synthesized 2-methyl-palmitate and 2-methyl[1-14C] palmitate as a model substrate for the study of the beta oxidation of branched (isoprenoid) fatty acids in rat liver. 2-Methylpalmitate was well oxidized by isolated hepatocytes and its oxidation was stimulated after treatment of the animals with a peroxisome proliferator. Subcellular fractionation of rat liver demonstrated that 2-methylpalmitate is activated to its CoA ester in endoplasmic reticulum, mitochondria, and peroxisomes and that mitochondria and peroxisomes are capable of beta-oxidizing 2-methylpalmitate. At low unbound 2-methylpalmitate concentrations and in the presence of competing straight chain fatty acids, a condition encountered in vivo, peroxisomal 2-methyl-palmitate oxidation was 2- to 4-fold more active than mitochondrial oxidation. Treatment of rats with a peroxisome proliferator markedly stimulated mitochondrial but only slightly peroxisomal 2-methylpalmitate oxidation. The same treatment dramatically induced palmitoyl-CoA oxidase but did not change 2-methyl-palmitoyl-CoA oxidase activity. Our results indicate 1) that in untreated rats peroxisomes contribute for an important part to the oxidation of 2-methylpalmitate; 2) that treatment with a peroxisome proliferator stimulates mainly the mitochondrial component of 2-methylpalmitate oxidation; and 3) that palmitoyl-CoA and 2-methylpalmitoyl-CoA are oxidized by different peroxisomal oxidases.  相似文献   

13.
Yeh SR  Ropson IJ  Rousseau DL 《Biochemistry》2001,40(14):4205-4210
Intestinal fatty acid binding protein (IFABP) is a member of the lipid binding protein family, members of which have a clam shell type of motif formed by two five-stranded beta-sheets. Understanding the folding mechanism of these proteins has been hindered by the presence of an unresolved burst phase. By initiating the reaction with a sub-millisecond mixer and following its progression by Trp fluorescence, we discovered three distinct phases in the folding reaction of the W6Y mutant of IFABP from which we postulate the following sequence of events. The first phase (k(1) > 10 000 s(-1)) involves collapse of the polypeptide chain around a hydrophobic core. During the second phase (k(2) approximately 1500 s(-1)), beta-strands B-G, mostly located on the top half of the clam shell structure, propagate from this hydrophobic core. It is followed by the final phase (k(3) approximately 5 s(-1)) involving the formation of the last three beta-strands on the bottom half of the clam shell and the establishment of the native hydrogen bonding network throughout the protein molecule.  相似文献   

14.
Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an "open-cap" conformation or a "swivel-back" mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics.  相似文献   

15.
C H Chu  H Schulz 《FEBS letters》1985,185(1):129-134
The subcellular location of 3-hydroxyacyl-CoA epimerase (EC 5.1.2.3) was studied by differential centrifugation and Percoll density gradient centrifugation of a rat liver homogenate. The enzyme was found to be associated with peroxisomes but not with mitochondria. This observation proves that 3-hydroxy-acyl-CoA epimerase does not function in mitochondrial beta-oxidation of polyunsaturated fatty acids which are degraded by a modified pathway.  相似文献   

16.
In this study, we report the investigation of extracellular fatty acid binding protein gene (Ex-FABP) genetic polymorphism in a sample of 360 chicken individuals. The screening of the coding regions with their intron–exon boundaries and the proximal flanking regions was performed through a PCR-SSCP strategy. Following sequence analysis revealed 35 novel single nucleotide polymorphisms (SNPs) of chicken Ex-FABP gene. Among the 35 SNPs, twenty-five were found in the introns. And the remaining seven and three SNPs were in the coding region and the 5′UTR, respectively. Two SNPs in the coding region caused two missense mutants and the other five did not result in any amino acid changes. The nature and the distribution of Ex-FABP mutations in three chicken breeds were analyzed. Variations detected here might have an impact on Ex-FABP activity and function and underpin the development of gene markers for chicken fatty deposition and metabolism. The polymorphism, generated by C4715T mutation in exon5, was significantly associated with thickness of subcutaneous fat plus skin in cocks. Subcutaneous fat plus skin of cocks was more thick in TT genotype than in CC genotype (P < 0.05). The Ex-FABP gene could be a candidate locus or linked to a QTL that significantly affects fatty deposition and metabolism in chicken.  相似文献   

17.
The contribution of peroxisomal fatty acid beta-oxidation to ethanol metabolism was examined in deermice hepatocytes. Addition of 1 mM oleate to hepatocytes isolated from fasted alcohol dehydrogenase (ADH)-positive deermice in the presence of 4-methylpyrazole or to hepatocytes from fasted or fed ADH-negative deermice produced only a slight and statistically not significant increase in ethanol oxidation. Lactate (10 mM), which is not a peroxisomal substrate, showed a greater effect on ethanol oxidation. There was also a lack of oleate effect on the oxidation of ethanol by hepatocytes of ADH-positive deermice. Furthermore, in ADH-negative deermice, the catalase inhibitor azide (0.1 mM) did not inhibit the increase in ethanol oxidation by oleate and lactate. The rate of oleate oxidation by hepatocytes from fasted ADH-negative deermice was much lower than that of ethanol. These results indicate that in deermice hepatocytes, peroxisomal fatty acid oxidation does not play major role in ethanol metabolism.  相似文献   

18.
To determine whether the accumulation of liver triglyceride in Reye's syndrome could be due to a block in beta-oxidation of the fatty acids, the ability of Reye's and control liver homogenates from samples obtained at autopsy to oxidize fatty acids was examined. Total fatty acid oxidation as measured by oxidation of [1-14C]oleoyl CoA, which mostly represents mitochondrial activity, was comparable between the groups. Peroxisomal fatty acid oxidation was, likewise, similar despite the reported increase in the numbers and sizes of these organelles. This disparity could not be explained by an artifactual dilution of product by accumulated endogenous substrate. Inference is made that active peroxisomal beta-oxidation may contribute to the increased short chain fatty CoA content of liver which was reported earlier.  相似文献   

19.
The induction of liver fatty acid binding protein (L-FABP) by the peroxisome proliferators bezafibrate and clofibrate was compared with the induction of peroxisomal (cyanide-insensitive) palmitoyl-CoA oxidation in cultured rat hepatocytes maintained on a substratum of laminin-rich (EHS) gel. This substratum was chosen because marked induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was effected by bezafibrate in hepatocytes supported on EHS gel, whereas only peroxisomal palmitoyl-CoA oxidation was induced in hepatocytes maintained on collagen-coated plates. In control cells on EHS, activity of peroxisomal palmitoyl-CoA oxidation remained stable, while L-FABP abundance declined with time, and L-FABP mRNA was undetectable after 5 days. In cultures exposed to bezafibrate or clofibrate, peroxisomal palmitoyl-CoA oxidation activity was induced earlier and more rapidly than L-FABP. When fibrates were withdrawn, peroxisomal palmitoyl-CoA oxidation declined rapidly, whereas L-FABP continued to increase. L-FABP induction was accompanied by a striking increase in mRNA specifying this protein. Tetradecylglycidic acid, an inhibitor of carnitine palmitoyltransferase I, effectively doubled peroxisomal palmitoyl-CoA oxidation activity. However, tetradecylglycidic acid markedly inhibited fibrate induction of L-FABP and peroxisomal palmitoyl-CoA oxidation but, unexpectedly, did not prevent the fibrate-induced proliferation of peroxisomes. Maximal induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was produced at a bezafibrate concentration in the culture medium (0.05 mM) much lower than that of clofibrate (0.3 mM). Also, bezafibrate, but not clofibrate, inhibited [1-14C]oleic acid binding to L-FABP with a Ki = 9.5 microM. We conclude that hepatocytes maintained on EHS gel provide an important tool for investigating the regulation of L-FABP. These studies show that the induction of peroxisomal beta-oxidation and L-FABP by peroxisome proliferators are temporally consecutive but closely related processes which may be dependent on a mechanism distinct from that which leads to peroxisome proliferation. Furthermore, the mechanism of action of the more potent peroxisome proliferator, bezafibrate, may be mediated, in part, by interaction of this agent with L-FABP.  相似文献   

20.
1. Aqueous extracts of acetone-dried liver and kidney mitochondria, supplemented with NAD+, CoA and phenazine methosulphate, efficiently convert fatty-acyl-CoA compounds into acetyl-CoA; the process was followed with an O2 electrode. 2. Label from [1-14C]octanoyl-CoA appears in acetyl-CoA more rapidly than that from [8-14C]octanoyl-CoA. 3. Oxidation of [8-14C]octanoyl-CoA was terminated by addition of neutral ethanolic hydroxylamine and the resulting hydroxamates were separated chromatographically. Hydroxamate derivatives of 3-hydroxyoctanoyl-, hexanoyl-, butyryl- and acetyl-CoA were obtained. 4. These and other observations suggest that oxidation of octanoyl-CoA by extracts involves participation of free intermediates rather than uninterrupted complete degradation of individual molecules to acetyl-CoA by a multienzyme complex. 5. Intact liver mitochondria studied by the hydroxamate technique were also shown to form intermediates during oxidation of labelled octanoates. In addition to octanoylhydroxamate, [8-14C]octanoate gave rise to small amounts of hexanoyl-, butyryl- and 3-hydroxyoctanoyl-hydroxamate. In contrast with extracts, however, where the quantity of intermediates found was a significant fraction of the precursors, mitochondria oxidizing octanoate contained much larger quantities of octanoyl-CoA than of any other intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号