首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analysis of the genome structure of soybean cultivars was conducted to determine if cultivars are composed of large regions of chromosomes inherited intact from one parent (indicative of minimal recombination) or if the chromosomes are a mixture of one parent's DNA interspersed with the DNA from the other parent (indicative of maximal recombination). Twenty-one single-cross-derived and 5 single-backcross-derived soybean cultivars and their immediate parents (47 genotypes) were analyzed at 89 RFLP loci to determine the minimal number and distribution of recombination events detected. Cultivars derived from single-cross and single-backcross breeding programs showed an average of 5.2 and 8.0 recombination events per cultivar, respectively. A homogeneity Chi-square test based upon a Poisson distribution of recombination events across 13 linkage groups indicated that the number of recombinations observed among linkage groups was random for the single-cross cultivars, but not for the single-backcross-derived cultivars. A twotailed t-test demonstrated that for some linkage groups, the number of recombinations per map unit exceeded the confidence interval developed from a t-distribution of recombinations standardized for map unit distance. Paired t-tests of the number of recombinations observed between linkage-group ends and the mid-portion of the linkage groups indicated that during the development of the cultivars analyzed in this study more recombinations were associated with the ends of linkage groups than with the middle region. Detailed analysis of each linkage group revealed that large portions of linkage groups D, F, and G were inherited intact from one parent in several cultivars. A portion of linkage group G, in contrast, showed more recombination events than expected, based on genetic distance. These analyses suggest that breeders may have selected against recombination events where agronomically favorable combinations of alleles are present in one parent, and for recombination in areas where agronomically favorable combinations of alleles are not present in either parent.Names are necessary to report factually on the available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be available. Contribution of the Midwest Area, USDA-ARS, Project No. 3236 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011. Journal Paper No. J-16533  相似文献   

2.
The three B genomes of Brassica contained in B. nigra, B. carinata and B. juncea were dissected by addition in B. napus. Using phenotypic, isozyme and molecular markers we characterized 8 alien B-genome chromosomes from B. nigra and B. carinata and 7 from B. juncea by constructing synteney groups. The alien chromosomes of the three different sources showed extensive intragenomic recombinations that were detected by the presence of the same loci in more than one synteny group but flanked by different markers. In addition, intergenomic recombinations were observed. These were evident in euploid AACC plants of the rapeseed phenotype derived from the addition lines carrying a few markers from the B genome due to translocations and recombinations between non-homoeologous chromosomes. The high plasticity of the Brassica genomes may have been an powerful factor in directing their evolution by hybridization and amphiploidy.  相似文献   

3.
An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality.  相似文献   

4.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

5.
Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X‐Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X‐Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 105 times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes.  相似文献   

6.
We have previously examined characteristics of maternal chromosomes 21 that exhibited a single recombination on 21q and proposed that certain recombination configurations are risk factors for either meiosis I (MI) or meiosis II (MII) nondisjunction. The primary goal of this analysis was to examine characteristics of maternal chromosomes 21 that exhibited multiple recombinant events on 21q to determine whether additional risk factors or mechanisms are suggested. In order to identify the origin (maternal or paternal) and stage (MI or MII) of the meiotic errors, as well as placement of recombination, we genotyped over 1,500 SNPs on 21q. Our analyses included 785 maternal MI errors, 87 of which exhibited two recombinations on 21q, and 283 maternal MII errors, 81 of which exhibited two recombinations on 21q. Among MI cases, the average location of the distal recombination was proximal to that of normally segregating chromosomes 21 (35.28 vs. 38.86 Mb), a different pattern than that seen for single events and one that suggests an association with genomic features. For MII errors, the most proximal recombination was closer to the centromere than that on normally segregating chromosomes 21 and this proximity was associated with increasing maternal age. This pattern is same as that seen among MII errors that exhibit only one recombination. These findings are important as they help us better understand mechanisms that may underlie both age-related and nonage-related meiotic chromosome mal-segregation.  相似文献   

7.
Die kinetische Organisation der Lepidopteren-Chromosomen   总被引:6,自引:0,他引:6  
Hans Bauer 《Chromosoma》1967,22(2):101-125
In monokinetic chromosomes half of the recombinations from reciprocal translocation are expected to be lethal owing to the formation of bikinetic and akinetic chromosomes. In holokinetic chromosomes all reciprocal recombinations should be viable, because all again are holokinetic. This difference can be used as a tool other than the study of fragment behaviour to decide which type of chromosome is present in an animal species. — Pieris brassicae males X-rayed with 6,000 r units and mated to normal females gave in F1 only 19.9% lethal zygotes (14.7% of which dying late) as compared to a control mortality of about 7.7%. Among the hatched male caterpillars cytologically tested in the last larval instar 64.9% contained in their spermatocytes 1 to 4 heterozygous translocation rings or chains consisting of from 4 to 14 chromosomes. Translocations of similar frequency and even greater complexity have been observed in preliminary experiments on Philosamia cynthia. — The discrepancy between these results and those on species with monokinetic chromosomes (Drosophila, Phryne etc.) where very high zygotic lethality is observed at comparable Röntgen doses is proof of the holokinetic nature of Pieris and Philosamia chromosomes. Together with earlier results on Bombyx mori by Astaurow and Frolowa and the cytogenetic studies especially by Seiler sufficient proof exists to conclude that all Lepidoptera have holokinetic chromosomes. — A survey of the known groups of organisms with chromosomes of this type leads to the assumption that holokinetic chromosomes must be derived from monokinetic ones. The problems connected with this change in kinetic organisation of chromosomes are discussed.

Herrn Professor Dr. J. Seiler ist diese Arbeit in herzlicher Dankbarkeit für in mehr als 40 Jahren gewachsene Freundschaft zu seinem achtzigsten Geburtstag gewidmet worden.

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

8.
It has previously been shown that, in the presence of a source of P element transposase, male recombination in Drosophila melanogaster is induced at a rate of about 1% in the region of a single P[CaSpeR] element. This paper shows that recombinant chromosomes retain unaltered P[CaSpeR] elements at the original site in a high proportion of cases. This result is incompatible with a simple model in which recombination occurs by resolution of a Holliday junction following P element excision and repair. It has also previously been shown that homozygous regions containing a P element produce male recombination levels of 10–20%, an order of magnitude higher than that given by a single element. This paper shows that reciprocal recombinant chromosomes retaining P[CaSpeR] elements can be combined to produce similarly high levels of recombination. This result potentially allows for recombinant chromosomes from homologous recombination to be analysed at the molecular level in the region of the inserted element.  相似文献   

9.
D. G. Rowlands 《Chromosoma》1957,9(1):176-184
Summary InVicia faba two groups of chromosomes can be distinguished and consequently correlations of chiasma frequency can be calculated between the groups and also within the group of small chromosomes. A negative correlation was demonstrated during some analyses while positive ones occurred in others, in fact a wide range of coefficients could be calculated by both methods. It is suggested that negative correlation of chiasma frequency occurs only when reproduction of the chromosomes is precipitated or pairing delayed, so that the degree of pairing may be affected in plants where many chromosomes are present or where the chromosomes are large in size. Such correlations can have no influence on recombination, but rather they are the occasional outcome of the mechanism controlling chiasma frequency.  相似文献   

10.
Telosomic stocks have been extensively used to map genes to chromosome arms and to determine gene-to-centromere genetic distances. It has been suggested that if a chromosome arm is present as a telosome, recombination frequencies will be drastically reduced in the centromeric region. However, previous studies have not considered the bias in recombination estimates due to selection against aneuploid gametes produced by failure of pairing at the first meiotic division. Formulas are derived here for adjusting recombination estimates for this bias. Adjusted recombination frequencies between markers located on both sides of the centromeres are analyzed in three different pairs of wheat (Triticum aestivum) isogenic segregating populations involving bibrachial and telocentric chromosomes. Recombination frequencies estimated from crosses involving telocentric chromosomes were not significantly different from recombination frequencies estimated from isogenic crosses involving bibrachial chromosomes. The implications of the present findings for karyotype evolution, and specifically for Robertsonian fissions and fusions, are discussed. Received: 10 March 1999 / Accepted: 17 June 1999  相似文献   

11.

Background  

Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance) between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%), suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed.  相似文献   

12.
Recombination in Drosophila Melanogaster Male   总被引:8,自引:7,他引:1       下载免费PDF全文
T-007 strain of Drosophila melanogaster is known to show recombination in males. The present study established the following points: (1) Clustering occurrence of recombinant, unequal recovery of complementary products of recombination, relatively high frequency of recombination around centromeric region, and relatively frequent occurrence of mosaic phenontype flies-all of these seem to indicate that a considerable fraction of male recombination in the T-007 strain is of premeiotic, or somatic origin, although a fraction still could be of meiotic origin; (2) Male recombination occurs in the third as well as in the second chromosomes, and the frequencies of recombinations are comparable between these two chromosome pairs.  相似文献   

13.
Meiotic recombinations within the HLA-DR/DQ subregion are seldomly observed. However the high number of unusual DRB1-DQB1 allelic combinations underline the importance of crossover in shaping the class II haplotypic diversity. We present here the first report of a DQA1-DQB1 recombination event in a leukemic patient as detected by complete class II molecular typing of the family, including analysis of the DQCAR microsatellite. The recombination that occurred on the maternal chromosomes led to the unusual DR7-DQ8 haplotype characterized by the DRB1*0701-DRB4*01030102N-DQA1*0201-DQB1*0302 alleles. Because the patient had no HLA-identical sibling donor, a search for an unrelated hematopoietic stem cell donor was initiated. Out of three potential donors, only one HLA-A/-B/-C/DRB1-compatible but DQB1-mismatched donor could be identified.  相似文献   

14.
An improved recombineering approach by adding RecA to λ Red recombination   总被引:2,自引:0,他引:2  
Recombineering is the use of homologous recombination in Escherichia coli for DNA engineering. Of several approaches, use of the λ phage Red operon is emerging as the most reliable and flexible. The Red operon includes three components: Redα, a 5′ to 3′ exonuclease, Redβ, an annealing protein, and Redλ, an inhibitor of the major E. coli exonuclease and recombination complex, RecBCD. Most E. coli cloning hosts are recA deficient to eliminate recombination and therefore enhance thestabulity of cloned DNAs. However, loss of RecA also impairs general cellular integrity. Here we report that transient RecA co-expression enhances the total numer of successful recombinations in bacterial artificial chromosomes (BACs), mostly because the E. coli host is more able to survive the stresses of DNA transformation procedures. We combined this practical improvement with the advantages of a temperature-sensitive version of the low copy pSC 101 plasmid to develop a protocol that is convenient and more efficient than any recombineering procedure, for use of either double-or single-stranded DNA, published to date.  相似文献   

15.
Modern sugarcane cultivars (Saccharum spp., 2n = 100–120) are complex polyploids derived from interspecific hybridization performed a century ago between the sugar-producing species S. officinarum L. and the wild species S. spontaneum L. Using genomic in situ hybridization, we revealed that between 15 and 27.5% of the genome of modern cultivars is derived from S. spontaneum, including 10–23% of entire chromosomes from this wild species and 8–13% chromosomes derived from interspecific recombination. We confirmed the occurrence of 2n + n transmission in crosses and first backcrosses between these two species and demonstrated that this also can occur in crosses between S. officinarum and modern cultivars. We analysed five S. officinarum clones with more than 80 chromosomes and demonstrated that they were derived from interspecific hybridization supporting the classical view that this species is characterized by 2n = 80. We also illustrated the complementarities between molecular cytogenetics and genetic mapping approaches for analysing complex genomes.  相似文献   

16.
It has been shown repeatedly that numerous cumulative changes occur in chromosomes of D. melanogaster, as an effect of ageing which, especially in the homozygous state, significantly affect different fitness components of their carriers. It appears that the observed age-affected events are produced by systematic and ontogenetically programmed changes in genetic loads at specific chromosomes, which are transferable to following generations. It has been suggested that such changes could be of mutational origin, and that they cold be more frequent at gene loci which are epigenetically active during ontogenesis.It was demonstrated that a large sample of identical chromosomes behave quite differently in the homozygous state when obtained from aged compared to non-aged parents, producing a significant decrease in relative viability, length of preadult development, and longevity of their carriers, as well as in the frequency of recombinations of corresponding chromosomes. A specfic treatment by streptomycin resulted in remarkably milder effects of ageing, which is in accordance with the statement of some authors that such a treatment may diminish the frequency of spontaneous recessive mutations in their carriers. Thus the observed age-affected changes could be an important source of developmental and evolutionary variation of living organisms.  相似文献   

17.
Ross LO  Zenvirth D  Jardim AR  Dawson D 《Chromosoma》2000,109(4):226-234
Yeast artificial chromosomes composed primarily of bacteriophage λ DNA exhibit very low levels of meiotic crossing over compared with similarly sized intervals of natural yeast DNA. When these recombinationally quiet chromosomes were augmented with a 12.5 kb insert of sequences from yeast chromosome VIII, genetic studies demonstrated that the artificial chromosomes had acquired recombination properties characteristic of this region of chromosome VIII. On authentic yeast chromosomes, most meiotic recombination events are initiated at sites where the DNA is cleaved to create a double-strand break (DSB). This report describes physical analyses that were carried out to examine the relationship between DSB sites and the recombination behavior of the artificial chromosomes. The results show that DSBs are rare on these artificial chromosomes, except for the 12.5 kb insert. Mapping of the DSB sites shows that their positions correlate with the previously determined positions of DSB sites on chromosome VIII. Deletion of two characterized chromosome VIII DSB sites from the 12.5 kb insert on the artificial chromosome resulted in the loss of the predicted DSB fragments and a reduction in crossing over between artificial chromosomes. Received: 15 May 1998; in revised form: 26 September 1999 / Accepted: 18 November 1999  相似文献   

18.
Homologous chromosomes exchange genetic information through recombination during meiotic synapsis, a process that increases genetic diversity and is fundamental to sexual reproduction. Meiotic studies in mammalian species are scarce and mainly focused on human and mouse. Here, the meiotic recombination events were determined in three species of Platyrrhini monkeys (Cebus libidinosus, Cebus nigritus and Alouatta caraya) by analysing the distribution of MLH1 foci at the stage of pachytene. Moreover, the combination of immunofluorescence and fluorescent in situ hybridisation has enabled us to construct recombination maps of primate chromosomes that are homologous to human chromosomes 13 and 21. Our results show that (a) the overall number of MLH1 foci varies among all three species, (b) the presence of heterochromatin blocks does not have a major influence on the distribution of MLH1 foci and (c) the distribution of crossovers in the homologous chromosomes to human chromosomes 13 and 21 are conserved between species of the same genus (C. libidinosus and C. nigritus) but are significantly different between Cebus and Alouatta. This heterogeneity in recombination behaviour among Ceboidea species may reflect differences in genetic diversity and genome composition.  相似文献   

19.
Pulsed-field gel electrophoresis (PFGE) has been used to study the timing, frequency, and distribution of double-strand breaks (DSBs) in chromosomal-sized DNA during meiosis in yeast. It has previously been shown that DSBs are associated with some genetic hotspots during recombination, and it is important to know whether meiotic recombination events routinely initiate via DSBs. Two strains have been studied here—a highsporulating homothallic wild type and a congenic mutant strain carrying a rad50S mutation. This mutant has previously been reported to accumulate broken molecules in meiosis to much higher frequencies than wild type and to abolish the characteristic wild-type processing of DNA that has been observed at the break sites. When whole chromosomes are resolved by PFGE, both strains show some broken molecules starting at the time that cells commit to genetic recombination. Breakage has been assessed primarily on Chromosome III and Chr. XV, using Southern hybridization to identify these chromosomes and their fragments. At any one time, break frequency in wild type is much lower than the cumulative frequency of recombination events that occur during meiosis. However, there is suggestive evidence that each break is short-lived, and it is therefore difficult to estimate the total number of breaks that may occur. In rad50S, chromosome breaks accumulate to much higher levels, which are probably broadly consistent with the estimated number of recombination events in wild type. However, since rad50S is substantially defective in completing recombination, it is not known for certain if it initiates events at wild-type frequencies. A surprising feature of the data is that a strong banding pattern is observed in the fragment distribution from broken chromosomes in both strains, implying that at least much of the breakage occurs at specific sites or within short regions. However, with the exception of the rDNA region on Chr. XII, assessment of the genetic map indicates that recombination can occur almost anywhere in the genome, although some regions are much hotter than others. Possible reasons for this apparent paradox are discussed. It may in part result from breakage levels too low for adequate detection in cold regions but may also imply that recombination events are localized more than previously realized. Alternatively, there may be a more indirect relationship between break sites and the associated recombination events. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Summary We have demonstrated close linkage between the genes for apolipoprotein E (apoE) and apolipoprotein CII (apoCII). Families segregating for apoE protein variants were screened for a DNA restriction fragment length polymorphism close to the apoCII gene by using an apoCII cDNA clone. The maximum lod score is 4.52 (sexes combined) at a recombination frequency of zero. Given linkage, it may be assumed that no recombinations have happened in altogether 33 observed meioses. It is therefore evident that the apoCII gene is situated on chromosome 19, close to the apoE gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号