首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8-Bromoadenine nucleotides were tested as potential substrates and/or inhibitors of mitochondrial processes in intact or disrupted organelles, as substrates of various phosphotransferases, and as allosteric effectors in the reactions catalyzed by phosphofructokinase, isocitrate dehydrogenase, glutamate dehydrogenase, and fructose-1,6-bisphosphatase. 8-BrATP and 8-BrADP are not recognized by the translocase system located in the inner mitochondrial membrane and cannot be used as usbstrates in oxidative phosphorylation and related reactions catalyzed be beef heart submitochondrial membranes. This confirms the high specificity for adenine nucleotides of the mammalian systems involved in energy-yielding and energy-requiring reactions. However, 8-BrATP and 8-BrADP are able to substitute for the natural adenine nucleotides in reactions catalyzed by many phosphotransferases, although their capacity as phosphate donors and acceptors is generally much reduced. On the other hand, in almost all investigated cases, the 8-bromoadenine nucleotides have lost the capability of the natural adenine nucleotides to act as allosteric effectors, indicating that the structural requirements for allosteric activity are more stringent than those for catalytic activity.  相似文献   

2.
Various ATP and AMP analogs with modifications in the base moiety or in the polyphosphate chain were tested as substrates and/or as allosteric effectors of rabbit muscle phosphofructokinase. The significance of different structural elements for the nucleotide-enzyme interaction is discussed. While all investigated triphosphate analogs with a modified purine base are substrates for phosphofructokinase, those with a modified polyphosphate chain are competitive inhibitors. 5′-Adenylyl-(β,γ-methylene) diphosphonate, which is a weak competitive inhibitor, is shown to have a high affinity for the allosteric site of phosphofructokinase. Among the investigated monophosphate analogs only adenosine-N1-oxide 5′-monophosphate can reverse the inhibitory effect of excessive ATP. A qualitative correlation is found between the quenching of the phospho-fructokinase-8-anilino-1-naphthalene-sulfonate fluorescence and the ability of the nucleotide analogs to act as substrates or as allosteric effectors of phosphofructokinase. It is concluded that the interaction of ATP with the allosteric site is more complex than that with the substrate site and requires both an intact adenine moiety and an intact terminal phosphate group for full activity.  相似文献   

3.
4.
A reactive ATP analog, N6-(6-bromoacetamidohexyl)-AMP.PCP, was synthesized in an attempt to covalently label the binding sites for adenine nucleotides, especially ATP, of various enzymes which utilize adenine nucleotides as substrates, cofactors, inhibitors or allosteric effectors. This reagent rapidly inactivated rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GPD), myokinase (MK), and creatine kinase (CK) under very mild conditions. Adenine nucleotide substrates prevented the inactivation. In the case of GPD, complete inactivation was observed when 1 mol of the reagent per mol of enzyme subunit was incorporated into the enzyme. These results indicate that the present ATP analog may be useful as an affinity labeling reagent for various adenine nucleotide-dependent enzymes.  相似文献   

5.
A soluble extract from rat skeletal muscles has been used with purified mitochondrial ATPase (F1) to develop steady states with respect to glycolytic flux, the concentrations of glycolytic intermediates and inorganic phosphate, and the concentrations and ratios of adenine nucleotides. Incubations were carried out in media resembling the ionic composition in the cell cytoplasm, in an attempt to evaluate the quantitative contributions of various effectors to the overall control mechanism under simulated in vivo conditions. The primary control reaction of glycolytic flux under the conditions studied could be identified with phosphofructokinase, followed by secondary control of the reaction catalyzed by hexokinase. Glycolytic flux was increased with increasing pH over the range 6.6–7.6, both in the absence and presence of ATPase. Without other added effectors, the glycolyzing extract maintained an ATP/ADP ratio of about 50 in the pH range 7.0–7.6, and phosphofructokinase was incompletely suppressed. Addition of increasing amounts of ATPase markedly stimulated glycolytic flux coincident with lowered steady-state ATP/ADP ratios, and decreased accumulation of hexose monophosphates. Control of flux by the ATP/ADP ratio (and simultaneously altered AMP concentration) was less effective if pH (7.3 to 7.6) or phosphate concentration (2 to 20 mm) was increased. Flux through phosphofructokinase was controlled principally when the ATP/ADP ratios were varied in the range between > 50 and 15. The inhibitory effect of citrate was evaluated. Suppression of glycolytic flux and accumulation of hexose monophosphates were dependent on incubation conditions. If the pH was 7.3 or less, and the phosphate concentration low (2 mm), flux through phosphofructokinase was significantly suppressed even at citrate concentrations less than 50 μm. Simultaneous decrease in the steady-state ATP/ADP ratio and elevation of AMP was ineffective in reversing this inhibition. At higher pH and, more dramatically, when the phosphate concentration was increased, sensitivity to citrate inhibition was markedly diminished. These data, taken together with studies of respiratory control with isolated mitochondria (21., 24.), J. Biol. Chem.250, 2275–2282) strongly suggest that adenine nucleotide control of both glycolysis and respiration is exerted when the ratio of free nucleotides (not protein bound) in the cytosol is in the range of 15 to > 50. The data further suggest that citrate plays an important role in the regulation of glycolysis in muscle when the ATP/ADP ratio is high (and the phosphate concentration is correspondingly low), but that this inhibition is overcome by liberation of inorganic phosphate during muscle contraction.  相似文献   

6.
Human erythrocyte phosphofructokinase was purified 150 fold by DEAE cellulose adsorption and ammonium sulfate precipitation.At pH 7,5 the enzyme exhibits allosteric kinetics with respect to ATP, fructose 6 phosphate, and Mg2+.ATP at high concentration acted as an inhibitor and ADP, 5′AMP, 3′,5′, AMP, acted as activators. Both effectors seemed to decrease the homotropic interactions beetween the fructose 6 phosphate molecules.The activators increased the affinity of phosphofructokinase for the substrate (F6P), the inhibitor decreased it.These ligands had no effect on the maximum velocity of the reaction except in the case of ADP.Interactions between the substrates and the effector ligands on the enzyme were considered in terms of the Monod - Changeux - Wyman model for allosteric proteins.With GTP and ITP, no inhibition was observed. At saturing concentration of GTP, ATP still inhibited phosphofructokinase.Both 3′5′ AMP and fructose 6 phosphate increased the concentration of ATP required to produce an inhibition of 50 %.Citrate, like ATP, inhibited phosphofructokinase by binding most likely at the same allosteric site. Erythrocyte phosphofructokinase is inhibited by 2–3 DPG.The study of the relation log V max = f (pH) suggested, that the active center contains at least one imidazole and one sulfhydryl group.  相似文献   

7.
In a reconstituted open and homogeneous enzyme system containing phosphofructokinase, fructose 1,6-bisphosphatase, pyruvate kinase, adenylate kinase, and glucose-6-phosphate isomerase sustained oscillations could experimentally be generated. The approach is based on a stirred flow-through reaction chamber. The periodic motions of the reactants are mainly caused by the antagonistic allosteric effects of the adenine nucleotides on the activities of the phosphofructokinase and fructose 1,6-bisphosphatase.  相似文献   

8.
The pH dependence of the activity of the allosteric phosphofructokinase from Escherichia coli has been studied in the pH range from 6 to 9, in the absence or presence of allosteric effectors. The sigmoidal cooperative saturation of phosphofructokinase by fructose 6-phosphate has been analyzed according to the Hill equation, and the following results have been obtained: (i) the apparent affinity for Fru-6P, as measured by the half-saturating concentration, [Fru-6P]0.5, does not change with pH; (ii) the cooperativity, as measured empirically by the Hill coefficient, nH, increases markedly with pH and reaches a value of 5.5-6 at pH 9; (iii) the catalytic rate constant, kcat, is controlled by the ionization of a critical group which has a pK of 7 in the absence of effector and must be deprotonated for phosphofructokinase to be active. The observation that pH affects both the cooperativity and the maximum velocity suggests that the catalytic efficiency of a given active site could be modified by the binding of fructose 6-phosphate to other remote sites. Finding values of the cooperativity coefficient larger than the number of substrate binding sites indicates that slow conformational changes may occur in phosphofructokinase. The cooperative saturation of phosphofructokinase by fructose 6-phosphate appears more complex than described by the classical concerted model at steady state and could involve two slowly interconverting states which differ in both their turnover rate constants and their affinities for fructose 6-phosphate. The presence of GDP shifts the pK of the critical group which controls kcat from 7 to 6.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
An intact cell assay system, based on Tween-80 permeabilization can be used to investigate ribonucleotide reductase activity in a variety of mammalian cell lines. An important consideration in the use of intact cells is the presence of other nucleotide metabolizing activities. The influence of these activities on estimates of pyrimidine (CDP) and purine (ADP) reductase in permeabilized hamster cells has been examined. Studies on the incorporation of label from CDP and ADP into RNA indicated that a very small proportion of the reductase substrates was eventually incorporated into RNA during routine enzyme assays, and would have no detectable effect on activity estimates. The possibility that the products of the reaction (dCDP and dADP) were eventually phosphorylated and incorporated into DNA was also examined, and it was found that proper permeabilization of the cells eliminated or greatly reduced loss of deoxyribonucleotides to DNA. An analysis by HPLC of nucleotides present during CDP and ADP reductase reactions showed that various kinases and phosphatases were active in permeabilized cells, as all levels of phosphorylation of nucleotide substrates and allosteric effectors were detected. The base composition of the nucleotides added to the assay systems were not altered. Although movement of phosphates occurred during the assay, the concentrations of substrates quickly reached equilibrium (within 1 min) with their respective nucleosides and nucleotides, resulting in a relatively constant although reduced concentration of CDP or ADP substrates during the 20-min assay. Similarly the levels of allosteric effectors, ATP for pyrimidine and dGTP for purine reductase activities, declined within the first minute of the assays and quickly reached an equilibrium with their respective adenine or guanine containing nucleotides during most of the reaction time. Although useful approximations of intracellular reductase activity can be obtained without correcting for modified nucleotide concentrations, precise determinations can be calculated when these alterations are taken into consideration. For example, estimates of intracellular Km values for CDP closely resembled those reported with highly purified mammalian enzyme preparations in other studies. Clearly, the intact cell assay system provides worthwhile information about mammalian ribonucleotide reductase in its physiologically relevant environment.  相似文献   

10.
The effects of insulin and increased cardiac work on glycolytic rate, metabolite content, and fructose 2,6-bisphosphate (Fru-2,6-P2) content were studied in isolated perfused rat hearts. Steady-state rates of glycolysis increased 5-fold with the addition of insulin to the perfusate or by increasing cardiac pressure-volume work and correlated well in most conditions with changes in substrate concentration (Fru-6-P) and with concentration of the activator, Fru-2,6-P2. There was no correlation with changes in other well known regulators including citrate, ATP, AMP, Pi, or cytosolic phosphorylation potential. Using phosphofructokinase purified from hearts perfused under identical conditions, allosteric kinetic experiments were performed using the metabolite and effector concentrations determined from in vivo experiments. Reaction rates for phosphofructokinase calculated in vitro agreed well with the glycolytic rates measured in vivo and correlated with changes in Fru-6-P but not with other effectors. However, higher Fru-2,6-P2 levels were more effective in maintaining phosphofructokinase activity at high ATP and citrate levels. Kinetic experiments did not indicate a covalent modification of phosphofructokinase. These data indicate that control of cardiac phosphofructokinase and glycolysis may be accomplished by changes in the availability of substrate, Fru-6-P, and activator, Fru-2,6-P2, rather than by citrate, adenine nucleotides, or cytosolic phosphorylation potential as previously suggested.  相似文献   

11.
The 1,N6-ethenoadenine nucleotide analogs epsilonADP and epsilonATP, contrary to recent findings (1), are shown to be unable to penetrate the inner mitochondrial membrane of intact rat liver mitochondria and can not be used as substrates by the respiratory chain enzymes in oxidative phosphorylation. On the other hand, these analogs are able to participate in transphosphorylation reactions, being good substrates for mitochondrial phosphotransferases located in the intermembrane space, such as nucleosidediphosphate kinase and adenylate kinase.  相似文献   

12.
The translocation of phosphoenolpyruvate by the tricarboxylate carrier system in rat liver mitochondria was shown to be inhibited by atractyloside and long chain fatty acyl CoA esters as well as benzene, 1, 2, 3 tricarboxylate. By contrast benzene 1, 2, 3 tricarboxylate did not inhibit atractyloside sensitive adenine nucleotide translocation catalyzed by phosphoenolpyruvate. These results indicate that although phosphoenoppyruvate is preferentially transported by the tricarboxylate carrier system, it may also be transported by the adenine nucleotide translocase. The inhibition of the adenine nucleotide and tricarboxylate carrier systems by atractyloside and long chain acyl CoA esters indicates a close functional interrelation-ship of these transport carriers in the inner mitochondrial membrane. Moreover, the potent inhibition of phosphoenolpyruvate, citrate, and adenine nucleotide transport by long chain acyl CoA's provides further evidence that these esters are natural effectors which participate in the regulation of gluconeogenesis, lipogenesis, and energy-linked respiration.  相似文献   

13.
Yeast phosphofructokinase was subjected to limited proteolysis by trypsin in the presence of different effectors. It could be demonstrated that the substrates MgATP and fructose-6-phosphate are able to protect the enzyme from inactivation by trypsin. Other effectors like AMP, ADP, phosphoenolpyruvate, citrate and ammonium ions exhibit only negligible effects. During the first step of degradation consisting in the conversion of the subunits from Mr 120,000 to 90,000 no significant effects of the substrates and effectors on the proteolytic inactivation of yeast phosphofructokinase can be observed. In the presence of ATP as well as of ADP the sensitivity of the enzyme against ATP inhibition is either not or only slightly influenced by proteolytic modification. The modified enzyme retains its sensitivity against activation by AMP, independently of whether effectors are present or absent during proteolysis. The kinetic parameters of the enzyme modified by subtilisin in the presence of ATP or of fructose-6-phosphate have been determined.  相似文献   

14.
G Le Bras  J R Garel 《Biochemistry》1982,21(26):6656-6660
Limited proteolysis of Escherichia coli phosphofructokinase by subtilisin yields a homogeneous derivative. This proteolyzed protein is composed of four polypeptide chains, with a molecular weight of 32 000 as compared to 37 000 for the original enzyme. Removal on each chain of about 5 kdaltons maintains the enzymatic activity and does not change the apparent affinity for the substrates ATP and fructose 6-phosphate. Limited proteolysis, however, affects the cooperativity of fructose 6-phosphate binding: the Hill coefficient is reduced from almost 4 in the native enzyme to only 2 in its proteolyzed derivative. Also, the proteolyzed protein is no longer sensitive to allosteric effectors, activator, or inhibitor. These changes in regulatory properties upon proteolysis are apparently due to the destruction of the effector binding site. The allosteric effector GDP protects phospho-fructokinase against proteolysis and irreversible thermal inactivation; GDP is, however, inefficient in protecting the proteolyzed protein against thermal denaturation. These results suggest that phosphofructokinase may function as a dimer of dimers, in which homotropic and heterotropic allosteric effects are not mediated by the same sets of quaternary interactions.  相似文献   

15.
An adenine analog 8-[m-(m-fluorosulfonylbenzamido)benzylthio]adenine (FSB-adenine) reacts covalently with sheep heart phosphofructokinase. Under conditions optimal for allosteric kinetics the modified enzyme is less sensitive to inhibition by ATP and insensitive to activation by AMP, cyclic AMP, and ADP. The concentration of fructose-6-P necessary for half-maximal activity is markedly decreased, while the cooperativity to the same substrate is not changed under the same conditions. The modified enzyme is more stable at pH 6.5 when compared with the native enzyme. Changes in the allosteric kinetics of the enzyme are proportional to the extent of modification reaching maximal effect when 3.2 mol of the reagent were bound/mol of tetrameric enzyme. Affinity labeling of the enzyme by the adenine derivative does not affect significantly the catalytic site. This is evidenced by the demonstration that under assay conditions optimal for Michaelian kinetics neither the Km for ATP nor for fructose-6-P is significantly changed following chemical modification. Maximal activity of the modified enzyme was 60% of the native enzyme. ADP gives the best protection, while AMP gives less protection against modification by the reagent. ATP slows the rate of the reaction and causes a slight decrease in maximum binding of the reagent to the enzyme. Modification of the enzyme caused a marked reduction of AMP and ADP binding. The evidence indicates that the modified site is a nucleotide mono- and diphosphate activation site.  相似文献   

16.
A mathematical model is proposed to describe the behavior of the pyruvate metabolic reactions, Krebs cycle and oxidative phosphorylation over a wide range of changes in the pyruvate influx rate and the activities of ATPase and NADH-reoxidating dehydrogenase. The role of adenine and pyridine nucleotides in various allosteric regulations of the Krebs cycle enzymes is discussed. The accumulation of ATP and NADH has been shown to proceed in definite succession, which makes the allosteric regulation of the Krebs cycle enzymes successive too. First "works" the inhibition by ATP, then by NADH. It has been shown that the properties of the model are in qualitative agreement with the experimental data (Garber A., Hanson R. [1]) on pyruvate oxidation by mitochondria from guinea pig liver, when allosteric regulation of isocitrate dehydrogenase by adenine nucleotides is taken into account.  相似文献   

17.
Targeting allosteric sites is gaining increasing recognition as a strategy for modulating the activity of enzymes, especially in drug design. Here we investigate the mechanisms of allosteric regulation of cathepsin K as a representative of cysteine cathepsins and a promising drug target for the treatment of osteoporosis. Eight novel modifiers are identified by computational targeting of predicted allosteric sites on the surface of the enzyme. All act via hyperbolic kinetic mechanisms in presence of low molecular mass substrates, as expected for allosteric effectors. Two compounds have sizable effects on enzyme activity using interstitial collagen as a natural substrate of cathepsin K and four compounds show a significantly stabilizing effect on cathepsin K. The concept of activity modification space is introduced to obtain a global perspective of the effects elicited by the modifiers. Analysis of the activity modification space reveals that the activity of cathepsin K is regulated via multiple, different allosteric mechanisms.  相似文献   

18.
The pyruvate kinases of Escherichia coli activated by ribose 5-phosphate (RP) has been partially purified. The active form of the enzyme has a molecular weight of about 180 000 as judged by sucrose density gradient centrifugations and Sephadex G-150 chromatography. On dissociation in the absence of sulfhydryl reagents such as dithiothreitol, the enzyme is inactivated and it has a molecular weight of about 110 000. Various substrates and effectors of the enzyme, with the exception of phosphate, do not influence the association-dissociation equilibrium of the enzyme. The enzyme, unlike pyruvate kinases from many other sources, is not activated by potassium ions. Sulfate and phosphate ions are inhibitory to the enzyme. Phosphate seems to be an allosteric inhibitor and its effect is completely antagonized by activators. The enzyme is activated in an allosteric manner by two classes of compounds, nucleoside monophosphates and sugar phosphates of the hexose monophosphate pathway. Amongst the nucleotides, guanosine 5'-phosphate and adenosine 5'-phosphate are the most effective activators. Amongst the hexose monophosphate pathway intermediates, RP is the most powerful activator, with apparent activation constants as low as 1 Mu. Sugar phosphates esterified at C-1 or both terminal positions are entirely ineffective in activation. The effectors act by changing the Michaelis constant for the substrates. Both of the substrates of the enzyme, adenosine diphosphate and phosphoenolpyruvate, yield cooperative-concentration plots in the presence of unsaturating concentrations of the fixed changing substrate. The initial velocity plots for both substrates become hyperbolic in the presence of saturating concentrations of RP.  相似文献   

19.
The pH dependence of the enzymic properties of the phosphofructokinase from Escherichia coli was compared to those of two mutants in which one carboxyl group of the active site has been removed from either Asp127 or Asp129. All measurements of activity were made in the presence of allosteric activator ADP or GDP to eliminate any cooperative process. Asp129 is a crucial residue for the activity of phosphofructokinase since its conversion to Ser decreases the catalytic activity by 2-3 orders of magnitude in both the forward and reverse reactions, but the ionization of Asp129 is not directly related the pH dependence of phosphofructokinase activity. This pH dependence is however modified by the Asp129----Ser mutation, which decreases the pK of another residue, Asp127, by as much as pH of 1.5. The side chain of Asp127 has the catalytic role proposed earlier: its deprotonated form acts as a base in the forward reaction, and its protonated form acts as an acid in the reverse reaction. The protonated form of Asp127 is also required for the binding of fructose 1,6-bisphosphate. The electrostatic interaction between the carboxyl groups of Asp127 and Asp129 seems different in free phosphofructokinase to that in enzyme/substrate complexes, suggesting that a conformational change occurs upon substrate binding. The pH dependence of phosphofructokinase activity involves one other ionizable group with a pK of approximately 6 which does not belong to the side chains of Asp127 or Asp129.  相似文献   

20.
Analogues of adenine nucleotides, containing an additional chloromethyl-pyrimidone ring fused to the purine base, were obtained by treatment of AMP, ADP and ATP with an alpha-acetylenic ester, methyl 4-chlorobut-2-ynoate. These compounds were tested for their ability to substitute for the natural substrates or cofactors of several enzymes. With the ADP analogue, pyruvate kinase showed a significant increase of the Km value and a moderate decrease of V, while the reverse was observed when hexokinase was tested with modified ATP. Adenylate kinase was active with the ATP analogue but not with the AMP derivative. Myosin accepted the ATP analogue as a substrate, but was irreversibly modified. Among the dehydrogenases tested, only glucose-6-phosphate dehydrogenase was inhibited by the nucleotide analogue. The structure--activity relationship of these nucleotide derivatives, which represent the largest dimensional deviation known from natural nucleotides, is discussed in comparison with some earlier described dimensional probes of enzyme-nucleotide binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号