首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galactose 1-phosphate uridylyltransferase (uridine diphosphoglucose: α-d-galactose 1-phosphate uridylyltransferase, EC 2.7.7.12) was isolated from human red cells by DEAE-cellulose and hydroxylapatite chromatography. The enzyme consists. of two similar subunits of molecular weight 44,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was found to be 67,000 by Sephadex G-200 chromatography and 88,000 by ultracentrifugation studies in sucrose density gradients. The specific activity of the purified enzyme was about 40 μmoles per min per mg of protein.  相似文献   

2.
《Experimental mycology》1987,11(1):36-48
A method was developed to assay glucose-1-phosphate uridylyltransferase and 2-acetamido-2-deoxyglucose-1-phosphate uridylyltransferase by separation and quantitation of the corresponding sugar nucleotides by HPLC. Glucose-1-phosphate uridylyltransferase (GPUT) fromNeurospora crassa was purified by a method involving ion-exchange, gel filtration, adsorption, and affinity chromatographic procedures. The enzyme was stable until the last step of purification, after which it became extremely labile, apparently due to disaggregation. With the purified enzyme, kinetic properties of GPUT were determined. Polyacrylamide gel electrophoresis (PAGE) of the purified enzyme under nondenaturing conditions showed a single band which contained all the enzymatic activity. Denaturation of the enzyme with sodium dodecyl sulfate followed by PAGE resolved the single band into four polypeptides of different molecular masses. The minimal molecular mass of the enzyme was calculated to be 537,000 Da. This value was similar to that calculated by sucrose density sedimentation, 580,000 Da, but different from that estimated by gel filtration, 1,600,000 Da. It is proposed that the native enzyme is a trimer which may be disaggregated. By electron microscopy of negatively stained samples, the enzyme appeared in the form of rosettes 10 nm in diameter.  相似文献   

3.
Galactose-1-phosphate Uridylyltransferase (uridine diphosphoglucose: α-d-galactose-1-phosphate Uridylyltransferase, EC 2.7.7.12) has been purified from human red blood cells and placental tissue. The placental enzyme was obtained as a homogeneous protein with a specific activity of about 100 units/mg of protein by a combination of previously published methods (G. R. Helmer, Jr., and V. P. Williams, 1981,Arch. Biochem. Biophys.210, 573–580) and concanavalin A-Sepharose chromatography. The properties of the two enzyme forms have been examined with respect to subunit size, electrophoretic properties, isozyme distribution, kinetic patterns, and immunological properties.  相似文献   

4.
Hexose 1-phosphate uridylyltransferase (EC 2.7.7.12) was present constitutively in Bifidobacterium bifidum. The enzyme was purified to a homogeneous state from B. bifidum grown on a glucose medium and characterized. The molecular weight of the enzyme is about 110,000.The pH optimum of the enzyme was 7.5. The enzyme was very labile on the acidic side below pH 4.5. Thymidine diphosphate glucose could serve as a substrate with about 60% efficiency of UDP-glucose. The Km values for UDP-gtucose, galactose 1-phosphate (Gal-l-P), UDP-galactose and glucose 1-phosphate (Glc-1-P) were estimated to be 2.3×10?5M, 5.0 × 10?4M, 3.1 × 10?5 M and 1.4 × 10?4M, respectively. From these results the physiological roles of the enzyme were considered in relation to galactose metabolism in B. bifidum.  相似文献   

5.
Acid phosphatase [AP; EC 3.1.3.2], a key enzyme involved in the synthesis of mannitol in Agaricus bisporus, was purified to homogeneity and characterized. The native enzyme appeared to be a high molecular weight type glycoprotein. It has a molecular weight of 145 kDa and consists of four identical 39-kDa subunits. The isoelectric point of the enzyme was found at 4.7. Maximum activity occurred at 65°C. The optimum pH range was between 3.5 and 5.5, with maximum activity at pH 4.75. The enzyme was unaffected by EDTA, and inhibited by tartrate and inorganic phosphate. The enzyme exhibits a K m for p-nitrophenylphosphate and fructose-6-phosphate of 370 M and 3.1 mM, respectively. A broad substrate specificity was observed with significant activities for fructose-6-phosphate, glucose-6-phosphate, mannitol-1-phosphate, AMP and -glycerol phosphate. Only phosphomonoesters were dephosphorylated. Antibodies raised against the purified enzyme could precipitate AP activity from a cell-free extract in an anticatalytic immunoprecipitation test.  相似文献   

6.
Glycerol-3-phosphate oxidoreductase (sn-glycerol 3-phosphate: NAD+ 2-oxidoreductase, EC 1.1.1.8) from human placenta has been purified by chromatography on 2,4,6-trinitrobenzenehexamethylenediamine-Sepharose, DEAE-Sephadex A-50 and 5'-AMP-Sepharose 4B approximately 15800-fold with an overall yield of about 19%. The final purified material displayed a specific activity of about 88 mumol NADH min-1 mg protein-1 and a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The native molecular mass, determined by Ultrogel AcA 44 filtration, was 62000 +/- 2000 whereas the subunit molecular mass, established on polyacrylamide gel in the presence of 0.1% sodium dodecyl sulphate, was 38000 +/- 500. The isoelectric point of the enzyme protein, determined by column isoelectric focusing, was found to be 5.29 +/- 0.09. The pH optimum of the placental enzyme was in the range 7.4-8.1 for dihydroxyacetone phosphate reduction and 8.7-9.2 for sn-glycerol 3-phosphate oxidation. The apparent Michaelis constants (Km) for dihydroxyacetone phosphate, NADH, sn-glycerol 3-phosphate and NAD+ were 26 microM, 5 microM, 143 microM and 36 microM respectively. The activity ratio of cytoplasmic glycerol-3-phosphate oxidoreductase to mitochondrial glycerol-3-phosphate dehydrogenase in human placental tissue was 1:2. The consumption of oxygen by human placental mitochondria incubated with the purified glycerol-3-phosphate oxidoreductase, NADH and dihydroxyacetone phosphate was similar to that observed in the presence of sn-glycerol 3-phosphate. The possible physiological role of glycerol-3-phosphate oxidoreductase in placental metabolism is discussed.  相似文献   

7.
Alliin lyase (alliin alkyl-sulfenate-lyase, EC 4.4.1.4; alliinase) of onion bulbs has been purified to homogeneity. The enzyme catalyzes the following β-elimination reaction.
Based on sedimentation equilibrium centrifugation data, the enzyme has a molecular weight of 150,000. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single subunit of Mr 50,000. Urea-polyacrylamide gel electrophoresis also yielded a single band after staining with Coomassie blue. The enzyme was shown to be a glycoprotein by the use of a periodic acid-Schiff base staining technique on SDS-PAGE-treated preparations. The carbohydrate moiety was 5.8% of the total protein molecular weight. It consisted of simple sugars, hexoseamines, and methyl pentose, but no sialic acid was found. The enzyme activity showed no requirement for exogenous pyridoxal 5′-phosphate. Inhibition and spectrophotometric studies indicated this cofactor was already bound to the enzyme. Chemical analysis revealed that there were 3 mol of pyridoxal 5′-phosphate per 150,000 g of enzyme.  相似文献   

8.
An NAD-dependent glycerol-3-phosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+ oxidoreductase, EC 1.1.1.8) has been isolated and purified from Saccharomyces cerevisiae by affinity and exclusion chromatography. The enzyme was purified 5100-fold to a specific activity of 158. It has a molecular weight of approximately 31,000, a pH optimum between 6.8 and 7.2, and is sensitive to high-ionic-strength salt solutions. The enzyme is most strongly inhibited by phosphate and chloride ions.  相似文献   

9.
Soluble acyl-CoA:sn-glycerol 3-phosphate acyltransferases (EC 2.3.1.15) which are localized in chloroplasts were purified from leaves of Pisum sativum and Spinacia oleracea and obtained free from interfering activities. The purification raised the specific activities by factors of about 1,000 for pea and 200 for spinach preparations. In pea chloroplasts, acyltransferase activity occurs in two soluble forms with apparent isoelectric points of 6.3 and 6.6. For both forms, the same molecular weight of about 42,000 was determined. The enzyme from spinach chloroplasts showed a slightly higher molecular weight and a lower isoelectric point of 5.2.  相似文献   

10.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

11.
An enzyme capable of hydrolyzing myo-inositol 1-phosphate was identified and partially purified from the erythrocytes of 7-day chicks. It has an apparent molecular weight of approximately 60,000, is heat stable, and has a pH of optimal activity between 6.5 and 7.3. In most regards the kinetic properties are similar to the myo-inositol 1-phosphatases of rat testis, rat mammary gland, bovine brain, and of yeast. The enzyme has an absolute requirement for a divalent cation; Mg2+ gave the greatest activity, with an optimal concentration of 2.5 mm in the standard assay employed. Zn2+, Co2+, and Mn2+ supported activity to a lesser degree. Activity was inhibited by NaF, HgCl2, and p-hydroxymercuribenzoate. myo-Inositol tetrakis (dihydrogen phosphate) and myo-inositol 1,3,4,5,6-pentakis (dihydrogen phosphate) were not substrates for this enzyme and inhibited the hydrolysis of myo-inositol 1-phosphate. Unlike other phosphatases for myo-inositol 1-phosphate, this enzyme cleaved myo-inositol 1-phosphate (Km = 8.6 × 10?5 m) and myo-inositol 2-phosphate (Km = 2.86 × 10?4 m) at approximately the same rates. It also hydrolyzed 2′-purine and pyrimidine ribonucleotides about as well as myo-inositol 1-phosphate, but was only 20–30% as active against the 3′-ribonucleotides and had scarcely any activity against the 5′-ribonucleotides. The amount of enzyme activity in erythrocytes of embryos, chicks, and mature chickens was the same (~29 μmol/ml rbc/h). The biological function of this enzyme in avian erythrocytes is unclear at this time. Other tissues containing this phosphatase also have an enzyme which synthesizes myo-inositol 1-phosphate from glucose 6-phosphate, but we have been unable to detect the presence of such an enzyme in avian erythrocytes.  相似文献   

12.
Glycogen phosphorylase in cell-free extracts of Neurospora crassa is activated 10- to 15-fold by incubation with MgATP2?. When the MgATP2? is removed, the active form (a form) reverts to the inactive form (b form). The inactivation requires Mg2+ and is inhibited by NaF. The results confirm that Neurospora crassa glycogen phosphorylase exists in two interconvertible forms and strongly suggests that the interconversion is catalyzed by a kinase and phosphatase. The a form was partially purified. The enzyme has a molecular weight of 320,000. Uridine diphosphate glucose is a linear competitive inhibitor with respect to glucose-1-phosphate and a linear non-competitive inhibitor with respect to glycogen. Glucose-6-phosphate is a hyperbolic (partial) noncompetitive inhibitor with respect to all substrates in both directions. The b form of the enzyme in crude cell-free extracts is stimulated 2- to 3-fold by 5′-AMP. As the b form is purified, the 5′-AMP activation is diminished. The molecular weight of the partially purified “b” form was also 320,000.  相似文献   

13.
We purified and partially sequenced a purple (λmax = 556 nanometers) acid phosphatase (APase; EC 3.1.3.2) secreted by soybean (Glycine max) suspension-culture cells. The enzyme is a metalloprotein with a Mn2+ cofactor. This APase appears to be a glycoprotein with a monomer subunit molecular weight of 58,000 and an active dimer molecular weight of approximately 130,000. The protein has an isoelectric point of about 5.0 and a broad pH optimum centered near 5.5. The purified enzyme, assayed with p-nitrophenyl phosphate as the substrate, has a specific activity of 512 units per milligram protein and a Km of approximately 0.3 millimolar; phosphate is a competitive inhibitor with a Ki of 0.7 millimolar. This APase is similar to one found in soybean seed meal but dissimilar to that found in soybean seedlings.  相似文献   

14.
6-Phosphofructo-1-kinase (PFK) of rat placenta was purified to homogeneity with a recovery of 56% of the enzyme activity in the original extract. The purified enzyme is a tetramer and the Mr value of the subunit is 85000 ± 1500 as shown by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Considering the properties of the native rat placental PFK isoenzyme, it is clear that this tissue is a complex mixture of homotetramer and heterotetramer. Purified placenta PFK displayed little cooperativity at pH 7.0 with respect to fructose 6-phosphate and was markedly inhibited with high concentrations of ATP. The affinity of the enzyme for fructose 6-phosphate was increased by fructose 2,6-biphosphate. The purified enzyme was highly inhibited by citrate, whereas it was only slightly inhibited by phospho enolpyruvate. ADP, AMP and fructose 2,6-biphosphate showed little stimulation towards placental PFK. The present study suggests that the placental PFK is a relatively active enzymic form and it is also probably characterized with a high rate of glycolysis possibly because this tissue requires a high energy production for the development and maintenance of the fetus as the placenta tends to be a semipermeable membrane through which substances are exchanged between mother and fetus.  相似文献   

15.
The ATP:d-fructose-6-phosphate 1-phosphotransferase (PFK) from Selenastrum minutum was purified to homogeneity. The purified plastid enzyme had a specific activity of 180 micromoles per milligram of protein per minute. It is a homomer with a subunit molecular weight of 70,000. The smallest enzymatically active form of the protein is a homotetramer of 280,000 daltons. The enzyme can, however, aggregate into different active forms, the largest of which has a molecular weight of more than 6 × 106. The pH optimum, regardless of aggregation state, is 7.25. The enzyme exhibits sigmoidal kinetics with respect to fructose-6-phosphate and hyperbolic kinetics with respect to ATP. Phosphate changes the sigmoidal fructose-6-phosphate saturation kinetics to hyperbolic. Phosphoenolpyruvate, 3-phosphoglycerate, 2-oxoglutarate, malate, citrate and ATP all inhibit the enzyme. The ratios of phosphoenolpyruvate and/or 3-PGA to phosphate are probably the most important factors regulating PFK activity in vivo. The enzyme cross-reacts with several antisera against both cytosolic and plastidic PFKs as well as against native potato pyrophosphate dependent phosphofructokinase suggesting that the algal PFK represents an evolutionarily primitive form.  相似文献   

16.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) from endosperm of developing wheat (Triticum aestivum L.) grains was purified to apparent homogeneity with about 52% recovery using ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and gel filtration through Sepharose-CL-6B. The purified enzyme, having a molecular weight of about 170,000, was a dimer with subunit molecular weights of 90,000 and 80,000, respectively. The enzyme exhibited maximum activity at pH 7.5 and was highly specific for pyrophosphate (PPi). None of the nucleoside mono-, di- or triphosphate could replace PPi as a source of energy and inorganic phosphate (Pi). Similarly, the enzyme was highly specific for fructose-6-phosphate. It had a requirement for Mg2+ and exhibited hyperbolic kinetics with all substrates including Mg2+. Km values as determined by Lineweaver-Burk plots were 322, 31, 139, and 129 micromolar, respectively, for fructose-6-phosphate, PPi, fructose-1,6-bisphosphate and Pi. Kinetic constants were determined in the presence of fructose-2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for its substrates. Initial velocity studies indicated kinetic mechanism to be sequential. At saturating concentrations of fructose-2,6-bisphosphate (1 micromolar), Pi strongly inhibited PFP; the inhibition being mixed with respect to both fructose-6-phosphate and PPi, with Ki values of 0.78 and 1.2 millimolar, respectively. The inhibition pattern further confirmed the mechanism to be sequential with random binding of the substrates. Probable role of PFP in endosperm of developing wheat grains (sink tissues) is discussed.  相似文献   

17.
High glucoamylase (α-D-/1 → 4/glucan glucohydrolase, EC 3.2.1.3.) activity was obtained in the cell-free culture fluid of Cephalosporium charticola. Glucoamylase seems to be the only amylolytic enzyme produced by C. charticola. The enzyme, purified on diethylaminoethyl-cellulose, was homogeneous by disc gel electrophoresis. The optimum pH on starch was 5.4, and optimum temperature was 60 C. Starch was degraded more rapidly than several other substrates; maltose was hydrolyzed about one-fifth as rapidly as starch. The molecular weight was 69,000, as determined by Sephadex G-100 filtration. The enzyme is a glycoprotein and contains about 6.6% sugars (mannose and glucosamine).  相似文献   

18.
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.8 × 105 and was composed of four subunits of apparently equal size. The substrate specificity was very strict, only glucose 6-phosphate and glucose being oxidized by NADP or thio-NADP. Zinc ion was a powerful inhibitor of the enzyme, inhibition being competitive with respect to glucose 6-phosphate, with Ki about 2.5 μm. Other divalent metal ions which also serve as inhibitors are nickel, cadmium, and cobalt. It is proposed that the stimulation of polyketide synthesis by zinc ion may be mediated in part by inhibition of glucose-6-phosphate dehydrogenase.  相似文献   

19.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

20.
The GNB/LNB (galacto-N-biose/lacto-N-biose) pathway plays a crucial role in bifidobacteria during growth on human milk or mucin from epithelial cells. It is thought to be the major route for galactose utilization in Bifidobacterium longum as it is an energy-saving variant of the Leloir pathway. Both pathways are present in B. bifidum, and galactose 1-phosphate (gal1P) is considered to play a key role. Due to its toxic nature, gal1P is further converted into its activated UDP-sugar through the action of poorly characterized uridylyltransferases. In this study, three uridylyltransferases (galT1, galT2, and ugpA) from Bifidobacterium bifidum were cloned in an Escherichia coli mutant and screened for activity on the key intermediate gal1P. GalT1 and GalT2 showed UDP-glucose-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.12), whereas UgpA showed promiscuous UTP-hexose-1-phosphate uridylyltransferase activity (EC 2.7.7.10). The activity of UgpA toward glucose 1-phosphate was about 33-fold higher than that toward gal1P. GalT1, as part of the bifidobacterial Leloir pathway, was about 357-fold more active than GalT2, the functional analog in the GNB/LNB pathway. These results suggest that GalT1 plays a more significant role than previously thought and predominates when B. bifidum grows on lactose and human milk oligosaccharides. GalT2 activity is required only during growth on substrates with a GNB core such as mucin glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号