首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-subunit of the mitochondrial F1-ATPase is synthesized as a precursor in the cytoplasm which is delivered through two bilayers bounding the mitochondria prior to its assembly with other proteins into a functional complex. In order to determine the role of the amino-terminal 50 residues of the precursor on its localization, maturation, and assembly, a set of deletions within this region of the ATP2 gene encoding the beta-subunit has been analyzed. These studies reveal that deletions between residue 10 of the F1 beta-presequence and residue 36 can still direct in vivo mitochondrial import and assembly of the mutant subunit into a functional complex. Deletions within ATP2 which contain less than the first 10 residues of the precursor are not imported. Thus, the extreme amino terminus (about half of the transient presequence) of the F1 beta-subunit can direct its mitochondrial import. The wild-type F1 beta-subunit precursor is matured by the matrix-located metalloprotease at Lys19-Gln20; however, small in-frame deletions up to 17 residues distal to this site fail to be matured either in vitro or in vivo. This nonmatured F1 beta-subunit is also assembled into a functional enzyme and supports growth of its host on a nonfermentable carbon source. These data indicate that maturation of the F1 beta-subunit precursor is dependent on a protein sequence located distal to the proteolytic maturation site which is distinct from the mitochondrial targeting sequence.  相似文献   

2.
We have isolated a cDNA clone encoding the precursor of the beta-subunit of the bovine heart mitochondrial F1-ATPase. Two probes were used to isolate this precursor from a bovine heart cDNA library. One probe was a mixed-sequence oligonucleotide directed against a portion of the amino acid sequence of the mature protein, and the other probe was the F1-ATPase beta-subunit gene from Saccharomyces cerevisiae. Determination of the nucleotide sequence of this cDNA reveals that it contains a 1584-nucleotide-long open reading frame that encodes the complete mature beta-subunit protein and a 48 amino acid long NH2-terminal extension. This amino-terminal presequence contains four basic arginine residues, one acidic glutamic acid residue, four polar uncharged serine residues, and five proline residues. Southern blot hybridization analyses suggest that the bovine F1-ATPase beta-subunit precursor is encoded by a single genetic locus. RNA blot hybridization analyses reveal a single mRNA species of approximately 1.9 kilobases from both bovine liver and heart.  相似文献   

3.
The complete amino acid sequence of rat liver cytosolic alanine aminotransferase (EC 2.6.1.2) is presented. Two primary sets of overlapping fragments were obtained by cleavage of the pyridylethylated protein at methionyl and lysyl bonds with cyanogen bromide and Achromobacter protease I, respectively. The protein was found to be acetylated at the amino terminus and contained 495 amino acid residues. The molecular weight of the subunit was calculated to be 55,018 which was in good agreement with a molecular weight of 55,000 determined by SDS-PAGE and also indicated that the active enzyme with a molecular weight of 114,000 was a homodimer composed of two identical subunits. No highly homologous sequence was found in protein sequence databases except for a 20-residue sequence around the pyridoxal 5'-phosphate binding site of the pig heart enzyme [Tanase, S., Kojima, H., & Morino, Y. (1979) Biochemistry 18, 3002-3007], which was almost identical with that of residues 303-322 of the rat liver enzyme. In spite of rather low homology scores, rat alanine aminotransferase is clearly homologous to those of other aminotransferases from the same species, e.g., cytosolic tyrosine aminotransferase (24.7% identity), cytosolic aspartate aminotransferase (17.0%), and mitochondrial aspartate aminotransferase (16.0%). Most of the crucial amino acid residues hydrogen-bonding to pyridoxal 5'-phosphate identified in aspartate aminotransferase by X-ray crystallography are conserved in alanine aminotransferase. This suggests that the topology of secondary structures characteristic in the large domain of other alpha-aminotransferases with known tertiary structure may also be conserved in alanine aminotransferase.  相似文献   

4.
We have characterized the proteolytic processing of the beta-subunit of beta-hexosaminidase by identifying the amino termini of the various forms synthesized in cell-free translation and in cultured human fibroblasts. The procedures used had been developed for similar studies of the alpha-subunit (Little, L. E., Lau, M. M. H., Quon, D. V. K., Fowler, A. V., and Neufeld, E. F. (1988) J. Biol. Chem. 263, 4288-4292). Radioactive amino acids were incorporated biosynthetically into the different forms of the beta-subunit, which were isolated by immunoprecipitation, gel electrophoresis, and electroelution, and analyzed by automated Edman degradation. Translation by reticulocyte lysate in the presence of canine pancreas microsomes gave a product with alanine 43 at the amino terminus. The lysate could initiate translation at methionine 1 or methionine 13, depending on the SP6 mRNA provided. The product of signal peptidase action, the precursor form of the beta-subunit with amino-terminal alanine 43, was found in NH4+-induced secretions of cultured fibroblasts; intracellularly, this form was trimmed of two additional amino acids. The mature form was found to consist of three polypeptides joined by disulfide bonds; the amino termini were found to be valine 48, threonine 122, and lysine 315. Thus, in contrast to the alpha-subunit, the mature form of the beta-subunit of beta-hexosaminidase is derived from the precursor by internal proteolytic nicking rather than by removal of a large amino-terminal peptide segment.  相似文献   

5.
The recent identification of the alpha-subunit of mitochondrial F1-ATPase complex in rat liver peroxisomes suggests another functional role for this protein in both organelles in addition to its involvement in mitochondrial oxidative phosphorylation. We report here that a very rapid response (15 min) in the induction of the alpha-regulatory subunit of the mitochondrial F1-ATPase complex is observed in 37 degrees C heat-shocked larvae of Drosophila hydei. Under the same heat-shock treatment, a similar-fold induction for the heat-shock protein hsp-70 was less rapid (45 min). Although the amino acid sequence identities between the "chaperonine" and the alpha-subunit protein families are very low (less than 20%), two amino acid sequences, of 12 and 13 residues each, are found in the alpha-subunits of the F1-ATPase complex from various eukaryotes which show a highly conserved identity (over 50%) with amino acid sequences found in molecular chaperones. We suggest that the nuclear coded alpha-subunit belongs to the family of stress proteins hsp-60 and thus, that it could perform similar functional role(s) to those recently described for mitochondrial hsp-60 (Cheng, M. Y., Hartl, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L., and Horwich, A. L. (1989) Nature 337, 620-625 and Ostermann, J., Horwich, A. L., Neupert, W., and Ultrich-Hartl, F. (1989) Nature 341, 125-130) in both the mitochondria and the peroxisomes. Furthermore, we suggest that the two conserved elements among the chaperonines and the alpha-subunits could putatively be involved in the chaperonine function of these proteins.  相似文献   

6.
ATP synthesis from ADP, P(i), and Mg2+ takes place in mitochondria on the catalytic F1 unit (alpha3beta3gammedeltaepsilon) of the ATP synthase complex (F0F1), a remarkable nanomachine that interconverts electrochemical and mechanical energy, producing the high energy terminal bond of ATP. In currently available structural models of F1, the P-loop (amino acid residues 156GGAGVGKT163) contributes to substrate binding at the subunit catalytic sites. Here, we report the first transition state-like structure of F1 (ADP.V(i).Mg.F1) from rat liver that was crystallized with the phosphate (P(i)) analog vanadate (VO(3-)4 or V(i)). Compared with earlier "ground state" structures, this new F1 structure reveals that the active site region has undergone significant remodeling. P-loop residue alanine 158 is located much closer to V(i) than it is to P(i) in a previous structural model. No significant movements of P-loop residues of the subunit were observed at its analogous but noncatalytic sites. Under physiological conditions, such active site remodeling involving the small hydrophobic alanine residue may promote ATP synthesis by lowering the local dielectric constant, thus facilitating the dehydration of ADP and P(i). This new crystallographic study provides strong support for the catalytic mechanism of ATP synthesis deduced from earlier biochemical studies of liver F1 conducted in the presence of V(i) (Ko, Y. H., Bianchet, M., Amzel, L. M., and Pedersen, P. L. (1997) J. Biol. Chem. 272, 18875-18881; Ko, Y. H., Hong, S., and Pedersen, P. L. (1999) J. Biol. Chem. 274, 28853-28856).  相似文献   

7.
A full length cDNA clone encoding the precursor of the rat liver mitochondrial phosphate transporter (H+/Pi symporter) has been isolated from a cDNA library using a bovine heart partial length phosphate transporter clone as a hybridization probe. The entire clone is 1263 base pairs in length with 5'- and 3'-untranslated regions of 16 and 168 base pairs, respectively. The open reading frame encodes for the mature protein (312 amino acids) preceded by a presequence of 44 amino acids enriched in basic residues. The polypeptide sequence predicted from the DNA sequence was confirmed by analyzing the first 17 amino-terminal amino acids of the pure phosphate transporter protein. The rat liver phosphate transporter differs from the bovine heart transporter in 32 amino acids (i.e. approximately 10%). It contains a region from amino acid 139 to 159 which is 37% identical with the beta-subunit of the liver mitochondrial ATP synthase. Amino acid sequence comparisons of the Pi transporter with Pi binding proteins, other H+-linked symporters, and the human glucose transporter did not reveal significant sequence homology. Analysis of genomic DNA from both rat and S. cerevisiae by Southern blots using the rat liver mitochondrial Pi carrier cDNA as a probe revealed remarkably similar restriction patterns, a finding consistent with the presence in lower and higher eukaryotes of homologous Pi carrier proteins. This is the first report of the isolation, sequencing, and characterization of a full length cDNA coding for a protein involved in energy-coupled Pi transport.  相似文献   

8.
We have recently shown by deletion mutation analysis that the conserved first 18 N-terminal amino acid residues of rat liver carnitine palmitoyltransferase I (L-CPTI) are essential for malonyl-CoA inhibition and binding (Shi, J., Zhu, H., Arvidson, D. N. , Cregg, J. M., and Woldegiorgis, G. (1998) Biochemistry 37, 11033-11038). To identify specific residue(s) involved in malonyl-CoA binding and inhibition of L-CPTI, we constructed two more deletion mutants, Delta12 and Delta6, and three substitution mutations within the conserved first six amino acid residues. Mutant L-CPTI, lacking either the first six N-terminal amino acid residues or with a change of glutamic acid 3 to alanine, was expressed at steady-state levels similar to wild type and had near wild type catalytic activity. However, malonyl-CoA inhibition of these mutant enzymes was reduced 100-fold, and high affinity malonyl-CoA binding was lost. A mutant L-CPTI with a change of histidine 5 to alanine caused only partial loss of malonyl-CoA inhibition, whereas a mutant L-CPTI with a change of glutamine 6 to alanine had wild type properties. These results demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl-CoA binding and inhibition of L-CPTI by malonyl-CoA but are not required for catalysis.  相似文献   

9.
We have isolated the yeast ATP2 gene encoding the beta-subunit of mitochondrial ATP synthase and determined its nucleotide sequence. A fusion between the N-terminal 15 amino acid residues of beta-subunit and the mouse cytosolic protein dihydrofolate reductase (DHFR) was transcribed and translated in vitro and found to be transported into isolated yeast mitochondria. A fusion with the first 35 amino acid residues of beta-subunit attached to DHFR was not only transported but also proteolytically processed by a mitochondrial protease. Amino acid substitutions were introduced into the N-terminal presequence of the beta-subunit by bisulphite mutagenesis of the corresponding DNA. The effects of these mutations on mitochondrial targeting were assessed by transport experiments in vitro using DHFR fusion proteins. All of the mutants, harbourin from one to six amino acid substitutions in the first 14 residues of the presequence, were transported into mitochondria, though at least one of them (I8) was transported and proteolytically processed at a much reduced rate. The I8 mutant beta-subunit also exhibited poor transport and processing in vivo, and expression of this mutant polypeptide failed to complement the glycerol- phenotype of a yeast ATP2 mutant. More remarkably, the expression of I8 beta-subunit induced a more general growth defect in yeast, possibly due to interference with the transport of other, essential, mitochondrial proteins.  相似文献   

10.
Mitochondrial F1-ATPases purified from several dicotyledonous plants contain six different subunits of alpha, beta, gamma, delta, delta' and epsilon. Previous N-terminal amino acid sequence analyses indicated that the gamma-, delta-, and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma-subunit, the oligomycin sensitivity-conferring protein and the epsilon-subunit of animal mitochondrial F1F0 complex (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). However, the N-terminal amino acid sequence of the delta'-subunit did not show any obvious homologies with known protein sequences. A cDNA clone for the delta'-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide-hybridization selection of a cDNA library. The 1.0-kilobase-long cDNA contained a 600-base pair open reading frame coding for a precursor for the delta'-subunit. The precursor for the delta'-subunit contained N-terminal presequence of 21-amino acid residues. The mature delta'-subunit is composed of 179 amino acids and its sequence showed similarities of about 31-36% amino acid positional identity with the delta-subunit of animal and fungal mitochondrial F1 and about 18-25% with the epsilon-subunit of bacterial F1 and chloroplast CF1. The sweet potato delta'-subunit contains N-terminal sequence of about 45-amino acid residues that is absent in other related subunits. It is concluded that the six-subunit plant mitochondrial F1 contains the subunit that is homologous to the oligomycin sensitivity-conferring protein as one of the component in addition to five subunits that are homologous to subunits of animal mitochondrial F1.  相似文献   

11.
Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. Forming the catch is considered to be an essential step in cooperative nucleotide binding leading to gamma subunit rotation. The analogous residues, Arg304 and Gln305, in the chloroplast F1 gamma subunit were changed to leucine and alanine, respectively. Each mutant gamma was assembled together with alpha and beta subunits from Rhodospirillum rubrum F1 into a hybrid photosynthetic F1 that carries out both MgATPase and CaATPase activities and ATP-dependent gamma rotation [Tucker, W. C., Schwarcz, A., Levine, T., Du, Z., Gromet-Elhanan, Z., Richter, M. L. and Haran, G. (2004) J. Biol. Chem. 279, 47415-47418]. Surprisingly, changing Arg304 to leucine resulted in a more than 2-fold increase in the kcat for MgATP hydrolysis. In contrast, changing Gln305 to alanine had little effect on the kcat but completely abolished the well-known stimulatory effect of the oxyanion sulfite on MgATP hydrolysis. The MgATPase activities of combined mutants with both residues substituted were strongly inhibited, whereas the CaATPase activities were inhibited, but to a lesser extent. The results indicate that the C-terminus of the photosynthetic F1 gamma subunit, like its mitochondrial counterpart, forms a catch with the alpha and beta subunits that modulates the nucleotide binding properties of the catalytic site(s). The catch is likely to be part of an activation mechanism, overcoming inhibition by free mg2+ ions, but is not essential for cooperative nucleotide exchange.  相似文献   

12.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

13.
The structure of the insulin receptor was studied with polyclonal antibodies obtained from rabbits which were immunized with synthetic peptides having a sequence identity to three regions of the alpha-subunit and five regions of the beta-subunit. None of the alpha-subunit antibodies including alpha-Pep8 (residues 40-49 (Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J. (1985) Nature 313, 756-761), alpha-Pep7 (12 amino acid C-terminal extension (Ebina, Y., Ellis, L., Jarnagin, K., Ederly, M., Graf, L., Clauser, E., Ou, J.-H., Masiar, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., and Rutter, W.J. (1985) Cell 313, 747-758], or alpha-Pep6 (residues 1-7, 9) immunoprecipitated the human insulin receptor solubilized from IM-9 lymphocytes; however, alpha-Pep8 immunoprecipitated the dithiothreitol-reduced receptor. Antibodies prepared against the N terminus of the beta-subunit (alpha-Pep5, residues 780-790) and the ATP binding site (alpha-Pep3, residues 1013-1022) did not react with the intact receptor under any conditions; however, antibodies to the C terminus of the beta-subunit (alpha-Pep1, residues 1314-1324) and to the juxta-membrane region (alpha-Pep3, residues 952-962) immunoprecipitated the solubilized receptor in both its phosphorylated and nonphosphorylated forms. In contrast, the antibody reactive with the regulatory region of the beta-subunit which contains the major autophosphorylation sites (alpha-Pep2, residues 1143-1154) only precipitated the phosphorylated form. Thus the conformation of the extracellular domain of the receptor is rigid and stabilized by disulfide bonds, whereas several regions of the intracellular domain are accessible to antibodies and undergo conformational changes during autophosphorylation.  相似文献   

14.
Rat liver mRNA encoding the cytoplasmic precursor of mitochondrial isovaleryl-CoA dehydrogenase was highly enriched by polysome immunopurification using a polyclonal monospecific antibody. The purified mRNA was used to prepare a plasmid cDNA library which was screened with two oligonucleotide mixtures encoding two peptides in the amino-terminal portion of mature rat isovaleryl-CoA dehydrogenase. Thirty-one overlapping cDNA clones, spanning a region of 2.1 kbp, were isolated and characterized. The cDNA sequence of a 5'-end clone, rIVD-13 (155 bp), predicts a mitochondrial leader peptide of 30 amino acid residues and the first 18 amino acids of the mature protein. These consecutive 18 residues completely matched the amino-terminal peptide determined by automated Edman degradation of the rat enzyme. The leader peptide contains six arginines, has no acidic residues, and is particularly rich in leucine, alanine, and proline residues. Southern blot analysis of DNAs from human-rodent somatic cell hybrids with an isolated rat cDNA (2 kbp) assigned the isovaleryl-CoA dehydrogenase gene to the long arm of chromosome 15, region q14----qter. The chromosomal assignment was confirmed and further refined to bands q14----q15 by in situ hybridization of the probe to human metaphase cells. This location differs from that of the gene for medium-chain acyl-CoA dehydrogenase, a closely related enzyme, which has been previously assigned to chromosome 1.  相似文献   

15.
16.
Primary structure of the ovine pituitary follitropin beta-subunit.   总被引:2,自引:0,他引:2       下载免费PDF全文
The complete amino acids sequence of the ovine pituitary follitropin beta-subunit was established by studying the tryptic, chymotryptic and thermolytic peptides. The N-terminal sequence of the subunit was confirmed by subjecting the oxidated protein to Edman degradation in an automated sequenator. Automated Edman degradation of the reduced and alkylated (with iodo [14C]acetamide) beta-subunit indicated that most of the molecules used in the sequence studies had lost the N-terminal serine residue. This also confirmed the location of the first five half-cystine residues in the sequence. The proposed structure shows the presence of 111 amino acid residues with the two oligosaccharide moieties linked to asparagine residues located at positions 6 and 23. Heterogeneity occurs at both the termini of the polypeptide chain. Comparison of the sequence of beta-subunit of the ovine hormone with that proposed for human follitropin beta-subunit shows the absence of any deletions in the middle of the peptide chain. Of the 13 replacements, 11 residues can be explained on the basis of a single base change in the codon. The single tryptophan residue of the follitropin occupies an identical position in all the four species that have been studied. The region corresponding to residues 63-105 of the ovine beta-subunit is highly conserved in all the species.  相似文献   

17.
Arginine residues in the transit peptides of mitochondrial precursors are proposed to be important for uptake into mitochondria. To study this further, we have used cassette mutagenesis to create site-specific amino acid replacements within the transit peptide of rat mitochondrial malate dehydrogenase. Plasmids containing mutant sequences were expressed in vitro and tested in a mitochondrial uptake system utilizing isolated rat liver mitochondria. Substitution for arginine at position 14 with asparagine, glutamine, or alanine decreased the relative import level by 20-30% compared to the wild-type sequence when assayed in 1-h uptake experiments. Although lysine substitution did not alter import, substitution with glutamic acid decreased import by 40%. Alanine substitution for arginines at both positions 14 and 15 also dramatically decreased import. Uptake was partially restored in this mutant when positive charge was inserted at a new location within the transit peptide. Time course experiments showed that the initial rates of import were decreased in these mutants, as were the relative amounts of incorporated protein. These results were best explained by the loss of positive charge following amino acid substitutions for the arginine residues and suggest that the role of the charge is to enhance the efficiency of membrane translocation.  相似文献   

18.
P J Jackson  D A Harris 《FEBS letters》1988,229(1):224-228
The specific, mitochondrial ATP synthase protein (IF1) was covalently cross-linked to its binding site on the catalytic sector of the enzyme (F1-ATPase). The cross-linked complex was selectively cleaved, leaving IF1 intact to facilitate the subsequent purification of the F1 fragment to which IF1 was cross-linked. This fragment was identified by sequence analysis as comprising residues 394-459 on the F1 beta-subunit, near the C-terminus. This finding is discussed in the light of secondary structure predictions for both IF1 and the F1 beta-subunit, and sequence homologies between mitochondrial and other ATP synthases.  相似文献   

19.
We have constructed a nearly full length cDNA clone, pGTA/C44, complementary to the rat liver glutathione S-transferase Yb1 mRNA. The nucleotide sequence of pGTA/C44 has been determined, and the complete amino acid sequence of the Yb1 subunit has been deduced. The cDNA clone contains an open reading frame of 654 nucleotides encoding a polypeptide comprising 218 amino acids with Mr = 25,919. The NH2-terminal sequence deduced from DNA sequence analysis of pGTA/C44 is in agreement with the first 19 amino acids determined for purified glutathione S-transferase A, a Yb1 homodimer, by Frey et al. (Frey, A. B., Friedberg, T., Oesch, F., and Kreibich, G. (1983) J. Biol. Chem. 258, 11321-11325). The DNA sequence of pGTA/C44 shares significant sequence homology with a cDNA clone, pGT55, which is complementary to a mouse liver glutathione S-transferase (Pearson, W. R., Windle, J. J., Morrow, J. F., Benson, A. M., and Talalay, P. (1983) J. Biol. Chem. 258, 2052-2062). We have also determined 37 nucleotides of the 5'-untranslated region and 348 nucleotides of the 3'-untranslated region of the Yb1 mRNA. The Yb1 mRNA and subunit do not share any sequence homology with the rat liver glutathione S-transferase Ya or Yc mRNAs or their corresponding subunits. These data provide the first direct evidence that the Yb1 subunit is derived from a gene or gene family which is distinct from the Ya-Yc gene family.  相似文献   

20.
The yeast nuclear gene ATP2 encodes a F1-ATPase beta-subunit protein of 509 amino acids with a predicted mass of 54,575 daltons. In contrast to the ATPase beta-subunit proteins determined previously from Escherichia coli and various plant sources, the yeast mitochondrial precursor peptide contains a unique cysteine residue within its immediate amino terminus. Expression of an in-frame deletion in ATP2 between residues 28 and 34 to eliminate this single cysteine residue located near the processing site of the matrix protease does not prevent the in vivo delivery of the subunit to mitochondria or its assembly into a functional ATPase complex. Thus, the import F1 beta-subunit into mitochondria does not require a covalent modification of the type utilized for the secretion of the major lipoprotein from E. coli. In addition, analysis of the level of the major F1-ATPase subunits in mitochondria prepared from an atp2- disruption mutant demonstrates that the in vivo import of these catalytic subunits is not dependent on each other. These data and additional studies, therefore, suggest that the determinants for mitochondrial delivery reside within the amino terminus of the individual precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号