首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The side-effects of several fungicides used in wheat to control disease at heading growth stage were assessed on the aphid parasitoid Aphidius rhopalosiphi by tests conducted in the laboratory on glass plates and in the greenhouse on young wheat plants. Very few formulations containing only one active ingredient (carbendazim, cyproconazole or epoxyconazole) or combinations of two (carbendazim + cyproconazole, carbendazim + hexaconazole) were harmless to A. rhopalosiphi in the glass-plate tests. There was no apparent synergism between fungicides tested in combinations. The parasitoid mortalities in tests carried out on plants were less and chlorothalonil, epoxyconazole, fenpropidin, fenpropimorph, flusilazole, flutriafol, prochloraz, tebuconazole, tridemorph and a number of combinations (carbendazim + flutriafol, chlorothalonil + cyproconazole, epoxyconazole + tridemorph, chlorothalonil + hexaconazole, chlorothalonil + flutriafol, cyproconazole + prochloraz, epoxyconazole + fenpropimorph, fenpropimorph + propiconazole, propiconazole + tridemorph, triadimenol + tridemorph) were harmless or only slightly harmful to the aphid parasitoid. Several combinations (carbendazim + epoxyconazole, carbendazim + fenpropimorph, carbendazim + flusilazole, carbendazim + tebuconazole, chlorothalonil + fenpropimorph, chlorothalonil + flusilazole, fenpropimorph + fenpropidin, fenpropimorph + prochloraz, fenpropidin + propiconazole, fenpropidin + tebuco nazole, tebuconazole + triadimenol) were toxic for wasps on plants. The parasitoid mortalities were less on plants than on glass plates but the wasps spent less time on treated leaves and in some cases parasitism of aphids was reduced to a large extent. These results suggest that in addition to study of the direct effects of pesticides on beneficial insects (mortalities, reduction of fertility) their effects on the behaviour of the insects should also be studied. Products that induced a repellent effect need further testing in field or semi-field conditions. However, many fungicide combinations that have little or no effect on A. rhopalosiphi can protect wheat against a wide range of diseases and the results obtained in this study indicate that an appropriate and effective protection of wheat at earing growth stage can be achieved with products that have no effects on aphid parasitoids.  相似文献   

2.
《Phytochemistry》1987,26(3):663-668
Enzymatic assay systems have been used to directly demonstrate the inhibition of sterol Δ8 → Δ7-isomerase and Δ14-reductase during ergosterol biosynthesis in Saccharomyces cerevisiae by the structurally related fungicides, fenpropimorph, tridemorph and fenpropidin. Whilst tridemorph is shown to be a strong inhibitor of the Δ8 → Δ7-isomerase, fenpropimorph and fenpropidin are found to be very potent inhibitors of both enzymic reactions. The dual site of action exhibited by these two fungicides predicts a lower risk of resistance development against this group of compounds.  相似文献   

3.
The structurally related fungicides, tridemorph, fenpropimorph and fenpropidin have been shown to inhibit the sterol Δ14-reductase and Δ8→Δ7-isomerase during ergosterol biosynthesis in Saccharomyces cerevisiae and Ustilago maydis. However, although the three fungicides are able to inhibit both enzymes, tridemorph inhibits the Δ87-isomerase better than the Δ14-reductase whilst the reverse is true for fenpropidin and to a lesser extent for fenpropimorph.  相似文献   

4.
5.
6.
Aims: In this study, mechanisms of antimicrobial resistance and genetic relatedness among resistant enterococci from dogs and cats in the United States were determined. Methods and Results: Enterococci resistant to chloramphenicol, ciprofloxacin, erythromycin, gentamicin, kanamycin, streptomycin, lincomycin, quinupristin/dalfopristin and tetracycline were screened for the presence of 15 antimicrobial resistance genes. Five tetracycline resistance genes [tet(M), tet(O), tet(L), tet(S) and tet(U)] were detected with tet(M) accounting for approx. 60% (130/216) of tetracycline resistance; erm(B) was also widely distributed among 96% (43/45) of the erythromycin‐resistant enterococci. Five aminoglycoside resistance genes were also detected among the kanamycin‐resistant isolates with the majority of isolates (25/36; 69%) containing aph(3′)‐IIIa. The bifunctional aminoglycoside resistance gene, aac(6′)‐Ie‐aph(2″)‐Ia, was detected in gentamicin‐resistant isolates and ant(6)‐Ia in streptomycin‐resistant isolates. The most common gene combination among enterococci from dogs (n = 11) was erm(B), aac(6′)‐Ie‐aph(2″)‐Ia, aph(3′)‐IIIa, tet(M), while tet(O), tet(L) were most common among cats (n = 18). Using pulsed‐field gel electrophoresis (PFGE), isolates clustered according to enterococcal species, source and antimicrobial gene content and indistinguishable patterns were observed for some isolates from dogs and cats. Conclusion: Enterococci from dogs and cats may be a source of antimicrobial resistance genes. Significance and Impact of the Study: Dogs and cats may act as reservoirs of antimicrobial resistance genes that can be transferred from pets to people. Although host‐specific ecovars of enterococcal species have been described, identical PFGE patterns suggest that enterococcal strains may be exchanged between these two animal species.  相似文献   

7.
Aims: This study was carried out to find the prevalence of various plasmid‐mediated quinolone‐resistant (PMQR) determinants among the quinolone‐resistant clinical isolates of Shigella sp. from paediatric patients in Andaman & Nicobar Islands. Methods and Results: A total of 106 quinolone‐resistant Shigella isolates obtained from paediatric patients during hospital‐based surveillance from January 2003 to June 2010 were screened for the presence of various PMQR determinants. Of 106 isolates, 8 (7·5%) showed the presence of aac (6′)‐Ib‐cr and 3 (2·8%) harboured the qnrB genes with 2 (1·9%) of these isolates showing the presence of both. All the 9 isolates had uniform mutations in gyrA (S83L) and in parC (S80I). Conclusions: The prevalence of fluoroquinolone‐acetylating aminoglycoside acetyltransferase {aac (6′)‐Ib‐cr} gene is higher than qnrB gene among the clinical Shigella isolates. These PMQR determinants were detected in the Shigella isolates obtained from 2008–2010, indicating that it happens in a stepwise manner following the multiple mutations in quinolone resistance‐determining regions increase or extend resistance to quinolones or fluoroquinolones. Significance and Impact of Study: The prevalence of these genes are of grave concern as it may be horizontally transferred to other human pathogenic bacteria and can lead to therapeutic failure as a consequence of antimicrobial resistance, not only for the islands but also for the entire south‐east region. The results obtained should encourage further studies on the implications of the presence, distribution, association and variation of these determinants in our quest for understanding PMQR.  相似文献   

8.
Phenolic fungicides, which were initially fungicidal to mycelium of Armillaria mellea on the surface of well‐colonised wood billets, eventually stimulated the growth of A. mellea. An extensive growth of rhizomorphs was produced from A. mellea inoculum, which had been exposed to phenolic chemicals for 3 months, compared to few or no rhizomorphs produced from inoculum exposed to water or a suspension of a non‐phenolic fungicide, fenpropidin. Inoculated privet plants grown either in pots or under field conditions were treated with a range of fungicides; fenpropidin, phenyl phenol, cresylic acid or water (control) was applied every 6 months over 21/2 yr. Fenpropidin caused a slightly (but significantly) lower incidence of infection than occurred in untreated plants, but the phenolic fungicides, cresylic acid and phenyl phenol, did not reduce the incidence of infection. The severity of infection (% root circumference colonised at 5 cm depth) was greater following cresylic acid treatments than the other fungicides or water‐treated controls. Use of phenolic fungicides such as cresylic acid for the control of A. mellea may therefore be counter‐productive.  相似文献   

9.
Successive sowings of glasshouse-grown barley plants were treated with either tridemorph, ethirimol or both fungicides, and inoculated with an initially fungicide-sensitive isolate of Erysiphe graminis f. sp. hordei. The time taken for symptoms to appear, compared with that for untreated plants, decreased with successive sowings. This was interpreted as evidence for the increase in the frequency of fungicide-tolerant propagules in the pathogen population. Effective mildew control was obtained by the use of either or both fungicides in trial plot and field crops. Seedling assays for tolerance to tridemorph and ethirimol showed that tolerance was more evident in treated than in untreated crops in June. Some mildew populations partially tolerant to one fungicide also showed reduced sensitivity to the other. By July a response intermediate between tolerant and sensitive was recorded on all the plots, probably indicating the mixing of fungal populations from adjacent plots. Larger numbers of tolerant isolates were found in random samples from treated than from untreated crops.  相似文献   

10.
Abstract Treatment of Saccharomyces cerevisiae with the morpholine fungicide fenpropimorph was examined using both a wild-type and a mutant strain ( erg2 ) defective in sterol Δ 8 → 7-isomerase. No resistance to fenpropimorph was observed in the mutant strain after 3 days, although after 7 days the mutant and the wild-type strains had grown in concentrations of fenpropimorph close to the saturating dose. Re-inoculation of both strains into fresh medium containing fenpropimorph resulted in continued growth and this adaptation to fungicide tolerance was lost on subculture in the absence of fenpropimorph. Analysis of the sterols present in the cells indicated that fenpropimorph treatment resulted in the accumulation of Δ 8,14-sterols. This accumulation and the corresponding depletion of ergosterol were correlated with growth inhibition rather than the presence of Δ 8-sterols. Together with an absence of gene dosage effect for ERG2 on fenpropimorph sensitivity, this supports the hypothesis that sterol Δ 8 → 7-isomerase inhibition does not contribute to the fungicidal activity of fenpropimorph.  相似文献   

11.
Aims: To compare the distribution of integrons and trimethoprim–sulfamethoxazole resistance genes among Escherichia coli isolates from humans and food‐producing animals. Methods and Results: A collection of 174 multidrug‐resistant E. coli isolates obtained from faecal samples of food‐producing animals (n = 64) and humans (n = 59), and patients with urinary tract infections (n = 51) in Hong Kong during 2002–2004 were studied. The strains were analysed for their phylogenetic groups, the presence of sul genes (sul1 and sul2), integrons (intl1 and intl2) and class 1 integron‐associated dfr cassette genes by PCR, restriction enzyme analysis and sequencing. Integrons were identified in 110 (63·2%) isolates. The prevalence of integrons was significantly different according to the specimen sources (animal faecal 84·4%, human faecal 67·8% and human urinary 31·4%) and phylogenetic groups (B1 80·8%, A 77·6%, D 54·1% and B2 11·5%). Faecal isolates (both human and animal) are more likely to belong to group A and B1. In contrast, most urinary isolates were either groups B2 and D. Among dfr containing isolates, dfrA1 and dfrA12 were almost exclusively found in strains of phylogenetic groups A and B1; and were present in animal and human faecal isolates. In contrast, dfrA17 was found in both faecal and urinary isolates and comprised strains from all phylogenetic groups. The sul1 and sul2 genes were equally prevalent among the isolates irrespective of the specimen source and phylogenetic group status. Pulsed‐field gel electrophoresis analysis of isolates with identical cassette genes showed that they were genetically diverse. Conclusions: More animal faecal isolates carry class 1 integrons than human faecal and human urinary isolates, and the distribution of phylogenetic groups is common across animal and human faecal isolates but different from human urinary isolates. Significance and Impact of the Study: Commensal isolates from food‐producing animals are an important reservoir for integrons carrying antibiotic resistance genes.  相似文献   

12.
Eight isolates from different potato growing regions in Vietnam were characterized. All were highly pathogenic in some potato cultivars, but did not overcome the extreme resistance of Solanum stoloniferum and Solanum demissum. RT‐PCR analysis revealed that all of these isolates are recombinants. Sequence data for 4 isolates were obtained, and their reaction in potato cultivars harbouring specific N genes was determined. Different phylogenetic analyses of viral sequences confirmed previous results that the recombinant isolates evolved from different parental sequences. One of the Vietnamese isolates investigated had a specific structure. The need for a clear classification of PVYNWi isolates is discussed.  相似文献   

13.
Cercospora leaf spot of sugar beet, caused by the fungus Cercospora beticola, is a major foliar pathogen on sugar beet. Fungicide sprays have been used extensively to manage Cercospora leaf spot, including the benzimidazole fungicides. Resistance to benzimidazoles has been observed in isolates of C. beticola. The precise genetics of this resistance is not known in this fungus. We tested benzimidazole‐tolerant and ‐sensitive isolates and found a single mutation in the β‐tubulin gene of benzimidazole‐tolerant isolates that corresponds to a mutation known to confer benzimidazole tolerance in other ascomycetes. This mutation is predicted to cause a change from glutamic acid to alanine in the protein product. Isolates containing this mutation further show an increased sensitivity to an N‐phenylcarbamate, as would be predicted based on the mutant phenotype found in other filamentous fungi. Only a single mutation was found in isolates from different regions of the United States, isolated in different growing seasons.  相似文献   

14.
15.
Identification of Two Blast Resistance Genes in a Rice Variety, Digu   总被引:10,自引:0,他引:10  
Blast, caused by Magnaporthe grisea is one of most serious diseases of rice worldwide. A Chinese local rice variety, Digu, with durable blast resistance, is one of the important resources for rice breeding for resistance to blast (M. grisea) in China. The objectives of the current study were to assess the identity of the resistance genes in Digu and to determine the chromosomal location by molecular marker tagging. Two susceptible varieties to blast, Lijiangxintuanheigu (LTH) and Jiangnanxiangnuo (JNXN), a number of different varieties, each containing one blast resistance gene, Piks, Pia, Pik, Pib, Pikp, Pita2, Pita, Piz, Pii, Pikm, Pizt, Pit and Pi‐11, and the progeny populations from the crosses between Digu and each of these varieties were analysed with Chinese blast isolates. We found that the resistance of Digu to each of the two Chinese blast isolates, ZB13 and ZB15, were controlled by two single dominant genes, separately. The two genes are different from the known blast resistance genes and, therefore, designated as Pi‐d(t)1 and Pi‐d(t)2. By using bulked segregation method and molecular marker analysis in corresponding F2 populations, Pi‐d(t)1 was located on chromosome 2 with a distance of 1.2 and 10.6 cM to restriction fragment length polymorphism (RFLP) markers G1314A and G45, respectively. And Pi‐d(t)2 was located on chromosome 6 with a distance of 3.2 and 3.4 cM to simple sequence repeat markers RM527 and RM3, respectively. We also developed a novel strategy of resistance gene analogue (RGA) assay with uneven polymerase chain reaction (PCR) to further tag the two genes and successfully identified two RGA markers, SPO01 and SPO03, which were co‐segregated toPi‐d(t)1 and Pi‐d(t)2, respectively, in their corresponding F2 populations. These results provide essential information for further utilization of the Digu's blast resistance genes in rice disease resistance breeding and positional cloning of these genes.  相似文献   

16.
Among the Chili breeding lines from the Asian Vegetable Research Center, two were chosen for the screening of a larger selection of Cucumber mosaic virus (CMV) isolates, mainly from Asian countries. The chili line (VC246) showed a resistance against several CMV‐isolates and was compared with chili line VC27a that was susceptible to CMV infection. Among the 28 CMV isolates, five were identified as resistance breaking (AN‐like) and non‐resistance breaking (P3613‐like) for the line VC246, whereas all isolates could establish a systemic infection on VC27a. However, further testing revealed that resistance in VC246 was also dependent on the way of inoculation and the inoculums itself. Graft inoculation could overcome the resistance, and the inoculation with isolated viral RNA resulted in no infection at all on the resistant chili line, independent of the virus isolate. Using a pseudo‐recombinant approach, we identified RNA2 of resistance breaking isolates as responsible for systemic infection and confined the area within RNA2 to the 3′ terminal part including the ORF 2b. Sequence alignments of that area revealed eight distinct mutations on amino acid level, which was present either in resistance or non‐resistance breaking isolates. A reversion from the P3613‐like to the AN‐like sequence of two of these mutations induced no effect on Capsicum sp., but induced symptoms on several tobacco species distinct from those induced by the wild‐type virus. However, pseudorecombinants, each generated from sets of two different AN‐like isolates, which were expected to infect VC246 systemically, did not indicating that probably RNA2 must be in a specific context to have the effect. In this case, a generalized attribution of functions to single amino acid exchanges might be impossible or at least extremely difficult.  相似文献   

17.
Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F2, F3 and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F2 populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermediumTh. ponticum translocations (Pontin series) in breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Twenty‐nine synthetic hexaploid wheats (SHWs) were evaluated for resistance to five isolates of Zymoseptoria tritici, a devastating wheat pathogen worldwide. The five Z. tritici isolates varied in their virulence spectra towards wheat genotypes, indicating that they have distinct set of avirulence genes. New isolate‐specific resistances were identified that could be used in wheat breeding programmes. Comparing with the previous studies, the number of specific resistances identified in this study is considerable. Among 150 interactions, 78 isolate‐specific resistances were identified. Interestingly, 21 wheat genotypes showed specific responses to one or more isolates tested. Of these, 12 genotypes were highly resistant to all isolates, indicating that they possess known or novel effective resistance genes. The Stb15 and Stb16/Stb17 are effective resistance genes towards isolates used in this study, indicating that the conferred resistance in these genotypes is due to the presence of either of these genes in combination or individually. Alternatively, they may carry novel broad‐spectrum resistance gene(s) that their identification is of interest. Our data suggest that the presence of complete resistance to various Z. tritici isolates in SHWs justifies the need for more in‐depth research to characterize the likely novel genes.  相似文献   

19.
Ustilago maydis strains, with low to moderate resistance to fluazinam (Rf ranging from 11.8 to 80), were isolated in a mutation frequency of 0.75 × 10−7 after chemical mutagenesis with N‐methyl‐N‐nitro‐N‐nitrosoguanidine (MNNG). Genetic analysis resulted in the identification of two chromosomal genes. A study of the effect of mutant genes in the phytopathogenic fitness of U. maydis revealed that the resistance mutations had no apparent effect on mycelia growth rate and pathogenicity on young corn plants. Cross‐resistant studies showed that the mutations for resistance to fluazinam were also responsible for resistance to oligomycin, but not to dinitrophenol. A dose‐dependent inhibition of glucose oxidation in whole cells was observed by both fluazinam and oligomycin, and a complete inhibition was found at 40 μg/ml. The results obtained provide strong evidence that the mode of action of fluazinam consists of the inhibition the fungal cell's energy production process through direct inhibition of the ATP synthetase.  相似文献   

20.
Aims: We report the analysis of genetic determinants conferring resistance to pristinamycin in Staphylococcus epidermidis strains and epidemiology typing of these strains by pulsed‐field gel electrophoresis. Methods and Results: Staphylococcus epidermidis (346 isolates) were searched for strains with pristinamycin resistance. Pristinamycin‐resistant strains (seven isolates) were isolated in five patients with haematological cancer in the Bone Marrow Transplant Centre of Tunisia in 2002. Resistance to pristinamycin was observed in 2% of isolates. The seven pristinamycin‐resistant strains shared resistance to oxacillin (MIC = 8–512 μg ml?1), gentamicin (MIC = 16–512 μg ml?1), erythromycin (MIC > 1024 μg ml?1), lincomycin (MIC > 1024 μg ml?1), pristinamycin (MIC = 4–16 μg ml?1) and rifampin (MIC = 128–256 μg ml?1). erm genes were amplified: ermA from six strains and ermC from one. vga gene encoding streptogramins A resistance (pristinamycin résistance) was amplified from all strains and typed as vgaA by analysis after electrophoresis of restriction profiles of vga amplicons (two fragments with Sau3A of 164 and 378 bp; one fragment with EcoRI). Pulsed‐field gel electrophoresis (PFGE) of SmaI chromosomal DNA digests of the seven S. epidermidis isolates divided them into two distinct pattern types: pulsed‐field type A (classified from A1 to A6 subtypes) and type B. The six strains harbouring ermA genes belonged to the PFGE type A while the strain harbouring ermC genes belonged to the PFGE type B. We characterized an epidemic strain carrying the vgaA and ermA genes responsible for the outbreak. Conclusions: Two clones of pristinamycin‐resistant S. epidermidis were isolated in our patients. One of them, isolated in all patients, had expanded over six months suggesting acquisition by cross‐contamination. Significance and Impact of the study: Increasing isolation of pristinamycin resistant S. epidermidis strains is an alarming indicator of nosocomial dissemination. The vector will be determined to establish a system of epidemiological surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号