首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assemblage of planktonic foraminifera is described from 125 samples taken from the Cercado, Gurabo, and Mao Formations in the Cibao Valley, northern Dominican Republic. The primary objectives of this study are to establish a biochronologic model for the late Neogene of the Dominican Republic and to examine sea surface conditions within the Cibao Basin during this interval. The Cercado Formation is loosely confined to Zones N17 and N18 ( 7.0–5.9 Ma). The Gurabo Formation spans Zones N18 and N19 ( 5.9–4.5 Ma). The Mao Formation is placed in Zone N19 ( 4.5–3.6 Ma). Changes in the relative abundances of indicator species are used to reconstruct sea surface conditions within the basin. Increasing relative abundances of Globigerinoides sacculifer and Globigerinoides ruber, in conjunction with a decreasing relative abundance of Globigerina bulloides, suggests the onset of increasing sea surface temperature and salinity in conjunction with diminishing primary productivity at 6.0 Ma. Abrupt increases in the relative abundances of G. sacculifer and G. ruber at 4.8 Ma suggest a major increase in sea surface temperature and salinity in the early Pliocene. The most likely mechanism for these changes is isolation of the Caribbean Ocean through progressive restriction of Pacific–Caribbean transfer via the Central American Seaway. Periods of high productivity associated with upwelling events are recorded in the upper Cercado Formation ( 6.1 Ma) and in the middle Mao Formation ( 4.2 Ma) by spikes in G. bulloides and Neogloboquadrina spp. respectively. The timing of major increases in sea surface salinity and temperature as well as decreasing productivity ( 4.8 Ma) and periods of upwelling ( 6.1and 4.2 Ma) in the Cibao Basin generally corroborate previously suggested Caribbean oceanographic changes related to the uplift of Panama. Changes in sea surface conditions depicted by paleobiogeographic distributions in the Cibao Basin suggest that shoaling along the Isthmus of Panama had implications in a shallow Caribbean basin as early as 6.0 Ma. Major paleobiologic changes between 4.8 and 4.2 Ma likely represent the period of final closure of the CAS and a nearly complete disconnection between Pacific and Caribbean water masses. This study illustrates the use of planktonic foraminifera in establishing some paleoceanographic conditions (salinity, temperature, productivity, and upwelling) within a shallow water basin, outlining the connection between regional and localized oceanographic changes.  相似文献   

2.
A correlation between foraminiferal community dynamics and environmental conditions may provide a basis for establishing paleoclimatic proxies. We studied planktic foraminiferal shell fluxes and assemblages in samples collected in three time-series sediment trap deployments in the western equatorial Pacific under La Niña conditions from January to November 1999. Eleven species contributed about 90% of the total flux in all traps. Two sites (MT1, MT3) in the Western Pacific Warm Pool region (WPWP) were characterized by common occurrences of the species Globigerinoides ruber, Globigerinoides sacculifer, Globigerinoides tenellus, and Neogloboquadrina dutertrei. Site MT5 farther to the east in the equatorial upwelling region had common occurrences of Globigerina bulloides, Globigerinita glutinata, and Pulleniatina obliquiloculata. Very high abundances of G. bulloides and G. glutinata at MT5 indicate that equatorial upwelling (EU) occurred during the 1999 La Niña. The two western sites have similar assemblage compositions, but MT1 ( 135°E) has the highest fluxes (up to  3800 tests m− 2 day− 1), whereas MT3 ( 145° E) has fluxes below  2200 tests m− 2 day− 1. Relatively high fluxes (up to  3000 tests m− 2 day− 1) occur at site MT5 ( 176° E), where upwelling occurred.The differences in faunal composition in the WPWP and EU might be attributable to differences in the way in which nutrients are supplied to the phytoplankton: large amounts of suspended material are supplied to the WPWP by advection of waters passing through the coastal region of an archipelago, whereas upwelling of nutrient-rich waters enhances primary production in the EU. At the westernmost site in the WPWP, a peak in the G. bulloides flux coincided with southward flow of the New Guinea Coastal Current (NGCC) in late February, but the highest G. ruber flux coincided with northward flow of this current in late May. Thus, the differences in species dominance at this location may be caused by monsoon-driven variability in the flow direction of the NGGC.  相似文献   

3.
Paleoceanographic variability at southern high latitude Ocean Drilling Program (ODP) Site 747 was investigated in this study through the interval which spans the Middle Miocene Climate Transition (MMCT). Between 15.0 and 12.2 million years ago (Ma), foraminiferal δ18O records derived from both benthic (Cibicidoides spp.) and planktonic taxa (Globorotalia praescitula and Globigerina bulloides) reveal a history of changes in water column thermal and salinity structure and a strong imprint of seasonality. Prior to the MMCT, in the interval between 14.35 and 13.9 Ma, G. bulloides displays relatively high δ18O values similar to those of G. praescitula, interpreted to indicate weakening of the thermocline and/or increased seasonality with cooler early-spring and/or late-fall temperatures. Following this interval, G. bulloides δ18O values diverge significantly from benthic and G. praescitula values, with G. bulloides values remaining relatively low for at least 600 kyr following the benthic foraminiferal δ18O shift during the MMCT at ~ 13.9 Ma. This divergence in δ18O records occurs in direct association with the Mi3 cooling and glaciation event and may suggest: (1) a strengthening of the vertical temperature gradient, with greater cooling of deep waters than surface waters, (2) changes in the depth habitat of G. bulloides, (3) changes in the dominant season of G. bulloides calcification, (4) modification of surface-water δ18O values in association with enhanced sea-ice formation, (5) increased surface-water carbonate ion concentration, and/or (6) a significant decrease in surface-water salinity across the MMCT. The first of these possible scenarios is not likely, particularly in light of recent Mg/Ca evidence for significant surface-water cooling in the Southern Ocean associated with the MMCT. Of the remaining possibilities, we favor a change in surface salinity to explain the observed trends in δ18O values and hypothesize that surface salinity may have decreased by up to 2 salinity units at ~ 13.9 Ma. In this scenario, the development of a lower-salinity Antarctic surface layer coincided with regional cooling of both surface and deep waters of the Southern Ocean during the Mi3 glaciation of East Antarctica, and contributed into the dominance of Neogloboquadrina spp. between 13.8 and 13.2 Ma. Additionally, the distinct patterns observed in planktonic foraminiferal δ18O records spanning the MMCT correspond with changes in the vertical δ13C gradient between planktonic and benthic foraminiferal records and major changes in planktonic foraminiferal assemblages at Site 747, providing further evidence of the environmental significance of this climatic transition.  相似文献   

4.
Miocene and Pliocene reef tracts of the Caribbean were less common and smaller than older Oligocene and younger Pleistocene to Recent reefs. In the present study, samples from the Arroyo Bellaco exposures in the Cibao Valley, northern Dominican Republic were analyzed for 87Sr/86Sr to refine the age for a rare, well-developed Mio-Pliocene reef sequence. A mean age of 6.2 million years old (Ma) was determined for the reef. This age places the reef in the latter part of the late Miocene Messinian stage. The reef originated in a low-nutrient window at the end of a global cooling event and sea level lowstand, coincident with a period of decreased upwelling intensity from 6.2 to 5.8 Ma. Reef demise is attributed to a latest Miocene transgression and an associated pulse of marine siliciclastic deposition.  相似文献   

5.
We determined the faunal composition and total number of tests (#/g) of planktic foraminifera (> 125 μm) in core KH00-05 GOA 6 near Oman in order to decipher monsoon-induced variability of oceanographic productivity in the open-ocean upwelling area in the northwest Arabian Sea. The core contains a continuous record of sedimentation over the last 230 kyr, with the age model based on oxygen isotope and accelerator mass spectrometry 14C dates. We focused on species (Globigerina bulloides and Globigerinita glutinata) typical for SW monsoonal upwelling and species typical for NE monsoon conditions (Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerinoides ruber, and Globigerinoides sacculifer). The changes in relative abundance of these monsoonal indicators suggest that the open-ocean upwelling area was dominated by the SW monsoon during interglacial periods, but by the NE monsoon during glacial periods.Increases in total test abundance during glacial periods confirmed that the NE monsoon rather than SW monsoon contributes largely to planktic foraminiferal productivity in this area. We argue that three types of circumstances resulted in high productivity, with nine high productivity events occurring at a 23-kyr frequency. The first type caused high productivity events at 102 and 199 ka (interglacial periods), characterized by the dominance of upwelling species, indicating high productivity during strong SW monsoons, correlated with high July insolation at 45° N. An exceptional high productivity event occurred at 37 ka during interglacial marine isotope stage (MIS) 3, with contributions from both SW and NE monsoons. The second type of high productivity event occurred at 61, 147, and 175 ka, during glacial periods, characterized by dominance of NE monsoon species, and correlated with low January insolation at 45° N. In addition, a high productivity event at 85 ka (interglacial period) also was induced by enhanced NE monsoons. The last two high productivity events occurred during transitional periods from glacial to interglacial (MIS 6/5.5 and 2/1), were characterized by the replacement of NE monsoon species with upwelling species, and corresponded to abrupt climate warming, suggesting that they are related to both accelerated SW monsoon systems and reduced NE monsoon systems.  相似文献   

6.
Material collected during a three-year sediment trapping experiment in the Cariaco Basin, Venezuela (January 1997 to December 1999) is used to examine both temporal and inter-species variability in the oxygen isotope composition of planktonic foraminifera. Specifically, this study compares the oxygen isotope composition of six species of planktonic foraminifera (Globigerinoides ruber (pink), Globigerina bulloides, Neogloboquadrina dutertrei, Orbulina universa, Globorotalia menardii and Globorotalia crassaformis) with the climatology and hydrography of the region, and evaluates the application of each species for use in paleoceanographic reconstructions. The isotope results are consistent with known depth habitats for all six species. The lowest δ18O values (− 1 to − 2‰) were measured on G. ruber (pink) and G. bulloides, two species that live in the surface mixed layer. Values for deeper-dwelling species such as N. dutertrei, G. menardii and G. crassaformis are higher, predominantly ranging from 0 to − 0.5‰. Temperature estimates derived using species-specific paleotemperature equations indicate that G. ruber (pink) accurately estimates sea surface temperatures (SSTs) throughout the year, while G. bulloides temperature estimates are similar to measured surface temperatures only during the upwelling season (January–April). For the remainder of the year, the δ18O-derived temperatures for G. bulloides typically are lower than the measured SST. Although the maximum flux of all species occurs during upwelling, the flux-weighted annual mean isotopic composition of the six species indicates that only G. bulloides is biased towards this season. Therefore, we conclude that the sediment δ18O record of G. ruber (pink) is most suitable for estimating past values of mean annual SST, while G. bulloides provides information on conditions during spring upwelling. The depth of calcification of N. dutertrei varies seasonally in response to changes in the depths of the thermocline and chlorophyll maximum. As a result, the δ18O difference between G. ruber (pink) and N. dutertrei provides an estimate of the annual surface to thermocline temperature gradient in the basin.  相似文献   

7.
Hydrographic variability in the Mixed Water Region of the Northwest Pacific Ocean at latitudes 35°–40°N, between the Kuroshio Extension and Oyashio Front, causes complex upwelling, leading to large primary productivity and thus great fishery resources. We reconstructed the periodicity of the variability in North Pacific Intermediate Water upwelling and surface ocean hydrography based on the high-resolution analysis of diatom assemblages in seven cores, representing the last 150,000 years. We derived annual sea surface temperatures (SSTs) through a diatom-based proxy (Td). The Td′-derived annual SSTs (°C) are controlled by orbital forcing, and show a reversed saw-tooth in southern cores, in contrast to a normal saw-tooth pattern in the northern cores. Oceanic diatom abundances along the northern margin of the Mixed Water Region are twice times as high as beneath the axis of the Kuroshio Extension, and fluctuated in a revised saw-tooth pattern with higher overall abundances interglacials. After the last deglaciation, annual SSTs declined markedly during Heinrich and Bond events in the northern North Atlantic, when ice-rafted detritus transported by icebergs was abundant. Wavelet analyses of the record of oceanic diatom abundances show significant variability at 2.0-kyr, 2 to 5.6-kyr and 3.2 to 9.6-kyr periods. Wavelet analyses of the annual SST records show significant periodicity at 1.4 to 2.6-kyr, 3.3 to 4.0-kyr, 7.2 to 12.8-kyr cycles.  相似文献   

8.
Sediment trap samples collected over a seven-year period (February 1991–October 1997) from Guaymas Basin in the Gulf of California were used to study the oxygen isotope composition of five species of planktonic foraminifera, Globigerinoides ruber (white), Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii. The δ18O data were analyzed for temporal and interspecies variability and were compared to local hydrography to evaluate the use of each species in reconstructing past oceanographic applications. The two surface dwelling species, G. ruber and G. bulloides displayed the lowest δ18O values (~ 0.0 to ? 5.0‰), while δ18O values for the thermocline dwelling N. dutertrei, P. obliquiloculata, and G. menardii were higher (~ 0.0 to ? 2.0‰). The δ18O of G. ruber most accurately records measured sea surface temperatures (SSTs) throughout the year. G. bulloides δ18O tracks SSTs during the winter–spring upwelling period but for the remainder of the year records slightly colder, subsurface temperatures. The difference between the δ18O of the surface dwelling species, G. ruber and G. bulloides, and that of the thermocline dwelling species, N. dutertrei, P. obliquiloculata, and G. menardii, was used to estimate the surface to thermocline temperature gradient. During the winter these δ18O differences are small (~ 0.50‰) reflecting a well-mixed water column. These interspecies δ18O differences increase during the summer (~ 1.90‰) in response to the strong thermal stratification that exists at this time of year.  相似文献   

9.
《Palaeoworld》2020,29(3):636-647
Planktonic foraminifera collected from a sediment trap deployed off Hainan in the northwestern South China Sea (SCS-NW) between July 2012 and April 2013 were studied to evaluate their seasonal variability and ecology as well as to infer the factors controlling their shell fluxes. The total planktonic foraminifera flux, as well as the fluxes of the dominant species (Globigerinoides ruber, Globigerinoides sacculifer and Neogloboquadrina dutertrei), showed three distinct maxima during SW-monsoon in August 2012, the SW-NE intermonsoon in October 2012 and the NE-monsoon in December 2012–February 2013. These periods were characterized by upwelling, aerosol fallout, and intense wind mixing, respectively, from which the foraminiferal assemblages benefitted, as indicated by the close correlation between wind speed, sea surface temperature (SST), chlorophyll a concentration (Chl-a), δ18O of G. ruber and the shell fluxes. The correlation also suggests that temperature and food availability might have been the primary drivers of the observed changes in foraminiferal abundance. The offset between the SST deduced from flux-weighted of G. ruber δ18O and annual mean SST is only ∼0.3 °C, much lower than ∼5.2 °C between the summer and winter temperature, indicating a balanced seasonality bias in the shell flux. The linear regression between the satellite-derived sea surface temperature and G. ruber δ18O reveals the strong potential of this species, at least in the studied region, as an ecological indicator for past oceanic environments.  相似文献   

10.
《Marine Micropaleontology》2011,80(3-4):67-79
The last 220 ka of the MD03-2705 (18° 05.81′ N–21° 09.19′ W) sedimentary sequence, retrieved off the Cape Verde islands, was investigated using a multiproxy approach. Planktonic foraminifera assemblage analyses, coupled with isotopic measurements (δ18O) from benthic (Planulina wuellerstorfi) and planktonic (Globigerinoides ruber) foraminifera monospecific samples were conducted along the topmost 11 m of the sequence. High resolution X-ray fluorescence measurements (0.5 cm resolution), giving access to major element ratio, have completed the geochemical analyses along the core. Seasonal and annual past sea surface temperatures (SST) were quantitatively reconstructed. Local sea-surface salinity (SSS) changes were then estimated by coupling SST with planktonic δ18O data. Our data provide a set of both oceanic and continental markers of environmental changes along the north-western African margin. The major changes detected in our record are discussed in the light of the regional paleoceanographic and paleoclimatic history of the last 220 ka. Coupled oceanographic and atmospheric processes portray the climatic evolution of the area, and show strong links among the regional oceanography (water mass advection), the upwelling dynamics and the Intertropical Convergence Zone (ITCZ) migration. An increased upwelling activity (or influence of upwelling filaments) is noted at the end of the two last glacial periods, probably in response to a more southerly position of the ITCZ. Higher SSS are recorded over the area during arid intervals and were tentatively interpreted as signing a southward shift of the Cape Verde Frontal Zone. A detailed coupling between dust advection and SSS values over the site of study was noted during MIS6.5.  相似文献   

11.
In the western Arabian Sea (WAS), the highest seasonal sea surface temperature (SST) difference presently occurs between May and August. In order to gain an understanding on how monsoonal upwelling modulates the SST difference between these two months, we have computed SST for the months of May and August based on census counts of planktonic foraminifers by using the artificial neural network (ANN) technique. The SST difference between May and August exhibits three distinct phases: i) a moderate SST difference in the late Holocene (0–3.5 ka) is attributable to intense upwelling during August, ii) a minimum SST difference from 4 to 12 ka is due to weak upwelling during the month of August, and iii) the highest SST difference during the last glacial interval (19 to 22 ka) with high Globigerina bulloides % could have been caused by the occurrence of a prolonged upwelling season (from May through July) and maximum difference in the incoming solar radiation between May and August. Overall, variations in the SST difference between May and August show that the timing of intense upwelling in the Western Arabian Sea over the last 22 kyr has been variable over the months of June, July and August.  相似文献   

12.
《Marine Micropaleontology》2006,58(2):114-134
Planktonic foraminiferal assemblages in 50 core-top samples from the western and southern areas of the Indonesian Archipelago and 29 core tops retrieved northwest of Australia were grouped using cluster analysis. These assemblages make it possible to sub-divide the studied area in five provinces: 1/ the Banda/Java region (I); 2/ the Timor region (II); 3/ the Java upwelling region (III); 4/ the Indian monsoon Sumatra region (IV), and 5/ the NW Australia margin region (V). The foraminiferal assemblage groups reflect differences in sea-surface temperature, salinity, thermocline depth, and nutrient supply between these five provinces. These differences are related to surface circulation patterns. The carbonate dissolution is rather intense compared to that in other areas of the eastern Indian Ocean. Within the studied area, the strongest dissolution occurs in samples from the Java upwelling region, with the lysocline level rising above ∼2800 m. The increase in abundance of Globigerina bulloides at 10–8 ka BP in core SHI-9034 (the Java upwelling region) corresponds to the decrease in core SHI-9006 (the Banda/Java region) which indicates an intensification of upwelling in relation to a strengthened southeastern monsoon over the studied area.  相似文献   

13.
Faunal assemblages, principal component (PCA), canonical correspondence (CCA), and factor analysis are applied to planktonic foraminifera from 57 core-top samples from the eastern Indian Ocean. The foraminiferal lysocline occurs at 2400 m north of 15°S where carbonate dissolution is induced by the Java upwelling system, and occurs deeper south of 15°S where carbonate dissolution is characteristic of the oligotrophic regions in the Indian Ocean. Dissolution effects, the February standing stock at the time of collection of the plankton-tow material, and different production rates explain the different foraminiferal assemblages found between plankton-tow and core-top samples. Core-top samples are differentiated by PCA into four groups — Upwelling, Western Pacific Warm Pool (WPWP), Transitional, and Southern — that are related to environmental variables (temperature, salinity and nutrients); all environmental variables follow a strong latitudinal component as indicated by the CCA analysis. Similarly, three assemblages are recognized by factor analysis: Factor 1 (dominated by Globigerinoides sacculifer, G. ruber, Globigerinita glutinata and Globorotalia cultrata), factor 2 (dominated by Globigerina bulloides and Globorotalia inflata) and factor 3 (dominated by Neogloboquadrina dutertrei) explain more than 92% of the variance, and are related to sea-surface temperature, thermocline depth and nutrient levels. The seasonal influence of the Java upwelling system supplies nutrients, phyto- and zooplankton to the oligotrophic eastern Indian Ocean (factor 1). South of 24°S, a deep chlorophyll maximum, a deep euphotic zone, a deep thermocline, SSTs below 22°C, and brief upwelling pulses seem to explain factors 2 and 3. The ratio of G. sacculifer and N. dutertrei, two mutually excluding species, appears to indicate the southern boundary of the WPWP. This ratio is applied to core Fr10/95-11 to demonstrate past shifts of the southern boundary of the WPWP.  相似文献   

14.
A sediment core from the Cabo Frio coastal shelf (?23.19 S, ?41.8 W; 117 m depth), was analyzed for TOC, C/N ratio, organic petrography and planktonic foraminiferal content to evaluate variations in local productivity caused by changes in upwelling intensity and its relation to regional and global climatic variations during the last millennium. The Cabo Frio core recorded the last 1200 years of sedimentation, with rates varying from 0.11 to 0.32 mm yr?1. Foraminiferal and organic geochemical analyses indicate the occurrence of three distinct periods of productivity. From 850 AD until 1070 AD, foraminifera fluxes consisting primarily of Turborotalita quinqueloba indicate stronger South Atlantic Central Water (SACW) transport onto the shelf, which induced high biological productivity that was also recorded by high TOC and marine palynomorphs content and a low C/N atomic ratio. This period coincided with a northward displacement of the atmospheric Intertropical Convergence Zone (ITCZ) and South Atlantic High (SAH) systems driven by positive temperature anomalies in the North Atlantic Ocean during the Medieval Climate Anomaly (MCA). From 1070 until 1500 AD, low TOC flux and planktonic foraminifera fluxes and high C/N atomic ratios suggest a reduction in marine productivity, probably driven by reduced transport of SACW associated with the southward displacement of the SAH and weakening of northeasterly winds. The period between 1500 and 1830 AD, which corresponds to the Little Ice Age, is marked by increased fluxes of planktonic foraminifera, principally of Globigerina bulloides and Globigerinita glutinata. These species mark an increase in productivity linked to SACW upwelling, supported by the enhancement of northeasterly winds and southward displacement of the ITCZ and SAH.  相似文献   

15.
Temporal patterns are evaluated in Neogene reef coral assemblages from the Bocas del Toro Basin of Panama in order to understand how reef ecosystems respond to long-term environmental change. Analyses are based on a total of 1,702 zooxanthellate coral specimens collected from six coral-bearing units ranging in age from the earliest Late Miocene to the Early Pleistocene: (1) Valiente Formation (12–11 Ma), (2) Fish Hole Member of the Old Bank Formation (5.8–5.6 Ma), (3) La Gruta Member of the Isla Colon Formation (2.2–1.4 Ma), (4) Ground Creek Member of the Isla Colon Formation (2.2–1.4 Ma), (5) Mimitimbi Member of the Urracá Formation (1.2–0.8 Ma), and (6) Hill Point Member of the Urracá Formation (1.2–0.8 Ma). Over 100 coral species occur in the six units, with faunal assemblages ranging from less than 10% extant taxa (Valiente Formation) to over 85% extant taxa (Ground Creek Member). The collections provide new temporal constraints on the emergence of modern Caribbean reefs, with the La Gruta Member containing the earliest occurrence of large monospecific stands of the dominant Caribbean reef coral Acropora palmata, and the Urracá Formation containing the last fossil occurrences of 15 regionally extinct taxa. Canonical correspondence analysis of 41 Late Miocene to Recent reef coral assemblages from the Caribbean region suggests changes in community structure coincident with effective oceanic closure of the Central American Seaway (~3.5 Ma). These changes, including increased Acropora dominance, may have contributed to a protracted period of elevated extinction debt prior to the major peak in regional coral extinctions (~2–1 Ma).  相似文献   

16.
The biology of modern Conidae (cone snails)—which includes the hyperdiverse genus Conus—has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated deposits from the Cibao Valley, northern Dominican Republic. These fossils come from the upper Miocene Cercado Fm. and lower Pliocene Gurabo Fm., and range in age from about 6.6-4.8 Ma. Comparison of the revealed coloration patterns with those of extant species allow the taxa to be assigned to three genera of cone snails (Profundiconus, Conasprella, and Conus) and at least nine subgenera. Thirteen members of these phylogenetically diverse reef faunas are described as new species. These include: Profundiconus? hennigi, Conasprella (Ximeniconus) ageri, Conus anningae, Conus lyelli, Conus (Atlanticonus?) franklinae, Conus (Stephanoconus) gouldi, Conus (Stephanoconus) bellacoensis, Conus (Ductoconus) cashi, Conus (Dauciconus) garrisoni, Conus (Dauciconus?) zambaensis, Conus (Spuriconus?) kaesleri, Conus (Spuriconus?) lombardii, and Conus (Lautoconus?) carlottae. Each of the three reef deposits contain a minimum of 14–16 cone snail species, levels of diversity that are similar to modern Indo-Pacific reef systems. Finally, most of the 28 species can be assigned to modern clades and thus have important implications for understanding the biogeographic and temporal histories of these clades in tropical America.  相似文献   

17.
Integrated data of calcareous nannofossils, as well as planktonic and benthic foraminifera from the Pissouri Motorway section on Cyprus allow the reconstruction of surface- and bottom-water paleoenvironments of the eastern Mediterranean during the interval preceding the Messinian salinity crisis (MSC). Contrary to deeper-water locations, where benthic foraminifera faunas are suppressed or absent just after the Tortonian–Messinian boundary, sediments deposited at intermediate water depths do contain benthic assemblages. From the earliest Messinian onwards, a development towards increasingly unfavourable paleoenvironments is reflected in the planktonic and benthic microfossil records of the Pissouri section and proceeds with rather discrete time steps that can be correlated to sequences throughout the Mediterranean. Shortly after the Tortonian–Messinian boundary a transition is recorded in the sedimentology and the open marine, deeper-water taxa disappear from the benthic foraminifera assemblages; subsequently, the diversity of all fauna groups diminishes. The changes recorded at species level in both surface-water and sea-floor dwelling taxa suggest decreasing circulation of the bottom waters, associated with changes in the surface waters, most likely due to increasing stratification. From ∼6.73 Ma onwards, our data indicate a prominent change to more restricted conditions and increasing salinity at the sea floor together with intermittently rising surface water salinity. The dominance of oligotypic and monospecific assemblages and the frequent shifts in assemblage compositions of all microfossil groups indicate severely stressed environments after ∼6.4 Ma, probably related to increased salinity. The major changes in paleoenvironmental conditions, including oxygen deprivation due to stagnation and hypersalinity, can be explained by hydrographical changes in the Mediterranean basin, which are probably caused by tectonic movements in the Rif Corridor acting in concert with astronomical cyclicity. Evaluation of the paleodepth proxies indicates that the depth of the Pissouri Basin remained rather constant at ∼300–500 m, with a minimum of 200 m, until deposition of the “barre jaune”, the transitional interval towards the evaporites and that early shallowing to neritic depths, as was proposed before, is highly unlikely.  相似文献   

18.
《Marine Micropaleontology》2006,60(2):113-129
The Tagus pro-delta (Portuguese Margin) and the Skagerrak (NE of the North Sea) are two marine systems controlled by atmospheric changes, which at present are mainly determined by fluctuations of the North Atlantic Oscillation (NAO). On the basis of diatom records from marine sediment cores, environmental changes (primary productivity and salinity) are reconstructed for the last 2000 years for both regions. These sites are investigated focusing on the regional response to changing NAO forcing.Both studied sites are characterized by sedimentation rates in the order of 0.12 cm/year and 0.47 cm/year for the most recent deposits off the Tagus pro-delta, allowing high-resolution paleoceanographic reconstructions (8.3 and 2.1 years represented per sample). The last 2000 years are a period covering in Europe the historical climatic periods known as the Dark Ages (DA), the Medieval Warm Period (MWP) and the Little Ice Age (LIA). In the Skagerrak, the cold periods of the DA and LIA are marked by diatom dissolution stages, whereas at the Tagus pro-delta, the DA were associated with increased diatom production and possible upwelling and the onset of the LIA corresponded to enhanced flow of the Tagus River. During the MWP, better diatom preservation in the Skagerrak, related to stronger advection of salty Atlantic waters, is paralleled by dominant upwelling conditions at the Tagus pro-delta. The two most intense upwelling periods at the Tagus pro-delta, at ∼ AD 600 and ∼ AD 900, correspond to a dissolution stage and a slight change in salinity in the Skagerrak, respectively.Although the comparison of the two study sites suggests a common forcing such as the NAO, the different inferred behaviors for each main climatic period in each region demonstrate that the NAO by its own is not sufficient to explain the climatic variability at a regional scale.  相似文献   

19.
《Palaeoworld》2020,29(3):476-489
The late Mesoproterozoic to Tonian (∼1100 Ma to ∼720 Ma) witnessed a critical evolutionary transition in Earth history. Several fossil taxa, including acritarchs and vase-shaped microfossils, have been suggested as potential diagnostic fossils for this time interval. The acanthomorphic acritarch Trachyhystrichosphaera aimika has become a focus of recent biostratigraphic investigations, showing great potential to assist the definition of the Tonian Global Boundary Stratotype Section and Point (GSSP). Although T. aimika has been extensively reported in the Proterozoic sequences, little is known about its phylogenetic interpretation. Its palaeogeographic and stratigraphic distributions need to be critically scrutinized with recently emended diagnosis of the taxon and new published age constraints. In this study, we report new palaeobiological data of T. aimika specimens from the Tonian Liulaobei Formation in the Huainan region, North China, using transmitted light microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Our analyses reveal a multilayered ultrastructure from the vesicle wall of T. aimika that has experienced advanced diagenesis to low-grade metamorphism with the peak palaeotemperature of ∼212 °C. In addition, a compilation of palaeogeographic occurrences of T. aimika shows the taxon is preserved in a wide range of palaeoenvironments and has a broad palaeogeographic distribution with a relatively limited stratigraphic range from ∼1150 Ma to ∼720 Ma, suggesting that T. aimika has great potential to become an index fossil for the late Mesoproterozoic to Tonian interval.  相似文献   

20.
High-resolution calcareous plankton (planktonic foraminifera and calcareous nannofossils) biostratigraphy is presented from the Middle to early Late Miocene interval (from 14.45 to 8.86 Ma) at Site 926 (ODP Leg 154, equatorial Atlantic Ocean). The main bioevents used in the low-latitude zonal schemes, and also auxiliary events revealing potential biostratigraphic value have been recognised. The investigated succession ranges from N.10 to N.16 Zones based on planktonic foraminifera, and from NN5 (CN4) to NN10 (CN8) Zones based on calcareous nannofossils. The evolution of the planktonic foraminiferal Globorotalia fohsi lineage appears to be environmentally controlled. The main diagnostic features of the species of this lineage are not always evident, rendering problematic the definition of the N.9/N.10, N.10/N.11 and N.11/N.12 zonal boundaries. Calcareous plankton events have been calibrated on the basis of the Astronomical Time Scale of Shackleton and Crowhurst 〚Shackleton, N.J., Crowhurst, S., 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. In: Curry, W.B., Shackleton, N.J., Richter, C., Bralower, T.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program) 154, pp. 69–82〛. The astrobiochronology obtained at Site 926 has been compared with that of the Mediterranean astronomically calibrated deep marine successions, allowing the evaluation of the degree of synchroneity and diachroneity of bioevents. Some bioevents, such as the last occurrence of Globigerinoides subquadratus dated at 11.55 Ma, the last occurrence of Sphenolithus heteromorphus dated at 13.51 Ma and the last common occurrence of Cyclicargolithus floridanus calibrated at 13.32 Ma, are near-synchronous events between the equatorial Atlantic and the Mediterranean area indicating their high biostratigratigraphic value in global correlation. The diachroneity of the last occurrence of Paragloborotalia siakensis, the first occurrence of Neogloboquadrina acostaensis and the last occurrence of Globorotalia peripheroronda between equatorial Atlantic and the Mediterranean reflect a different spatial and temporal distribution of these marker species probably due to a sharp definition of surface plankton provinces related to the latitudinal thermal gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号