首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of molecules that regulate microtubule dynamics and interactions of microtubules with other cellular structures. Many +TIPs have affinity for each other but the functional significance of these associations is unclear. Here we investigate the physical and functional interactions among three +TIPs in S. cerevisiae, Stu2, Bik1, and Bim1. Two-hybrid, coimmunoprecipitation, and in vitro binding assays demonstrate that they associate in all pairwise combinations, although the interaction between Stu2 and Bim1 may be indirect. Three-hybrid assays indicate that these proteins compete for binding to each other. Thus, Stu2, Bik1, and Bim1 interact physically but do not appear to be arranged in a single unique complex. We examined the functional interactions among pairs of proteins by comparing cytoplasmic and spindle microtubule dynamics in cells lacking either one or both proteins. On cytoplasmic microtubules, Stu2 and Bim1 act cooperatively to regulate dynamics in G1 but not in preanaphase, whereas Bik1 acts independently from Stu2 and Bim1. On kinetochore microtubules, Bik1 and Bim1 are redundant for regulating dynamics, whereas Stu2 acts independently from Bik1 and Bim1. These results indicate that interactions among +TIPS can play important roles in the regulation of microtubule dynamics.  相似文献   

2.
The kinesin-8 family of microtubule motors plays?a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.  相似文献   

3.
Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 μm−1 s−1 through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s−1. The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s−1 is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s−1 completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions.  相似文献   

4.
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.  相似文献   

5.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. the yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not been reported. We investigated Kip3''s role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.Key words: Cin8, cluster, GFP-tubulin, kinesin-5, kinesin-8, kinetochore, Kip3, metaphase, microtubule, mitosis, spindle  相似文献   

6.
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self‐encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid‐borne proteins Rep1, Rep2 and a cis‐acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co‐segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub‐nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule‐associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.  相似文献   

7.
Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.  相似文献   

8.
CLIPs are microtubule plus end-associated proteins that mediate interactions required for cell polarity and cell division. Here we demonstrate that budding yeast Bik1, unlike its human ortholog CLIP-170, is targeted to the microtubule plus end by a kinesin-dependent transport mechanism. Bik1 forms a complex with the kinesin Kip2. Fluorescently labeled Bik1 and Kip2 comigrate along individual microtubules. Bik1 exists in distinct intracellular pools: a stable pool at the spindle pole body that is depleted during cell cycle progression, a soluble pool from which Bik1 can be recruited during microtubule initiation, and a dynamic plus end pool maintained by Kip2. Kip2 stabilizes microtubules by targeting Bik1 to the plus end and Kip2 levels are controlled during the cell cycle. As with Bik1, the targeting of dynein to the microtubule plus end requires Kip2. These findings reveal a central role for Kip2-dependent transport in the cell cycle control of microtubule dynamics and dynein-dependent motility.  相似文献   

9.
Molecular motors translocate along cytoskeletal filaments, as in the case of kinesin motors on microtubules. Although conventional kinesin-1 tracks a single microtubule protofilament, other kinesins, akin to dyneins, switch protofilaments. However, the molecular trajectory—whether protofilament switching occurs in a directed or stochastic manner—is unclear. Here, we used high-resolution optical tweezers to track the path of single budding yeast kinesin-8, Kip3, motor proteins. Under applied sideward loads, we found that individual motors stepped sideward in both directions, with and against loads, with a broad distribution in measured step sizes. Interestingly, the force response depended on the direction. Based on a statistical analysis and simulations accounting for the geometry, we propose a diffusive sideward stepping motion of Kip3 on the microtubule lattice, asymmetrically biased by force. This finding is consistent with previous multimotor gliding assays and sheds light on the molecular switching mechanism. For kinesin-8, the diffusive switching mechanism may enable the motor to bypass obstacles and reach the microtubule end for length regulation. For other motors, such a mechanism may have implications for torque generation around the filament axis.  相似文献   

10.
Kinesin-14 motors generate microtubule minus-end-directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αβ-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1-microtubule interaction and positioning the motor for the start of the powerstroke. The results indicate that head-head communication is mediated through the adjoining coiled coil.  相似文献   

11.
《Biophysical journal》2020,118(8):1958-1967
Microtubules are highly dynamic filaments with dramatic structural rearrangements and length changes during the cell cycle. An accurate control of the microtubule length is essential for many cellular processes, in particular during cell division. Motor proteins from the kinesin-8 family depolymerize microtubules by interacting with their ends in a collective and length-dependent manner. However, it is still unclear how kinesin-8 depolymerizes microtubules. Here, we tracked the microtubule end-binding activity of yeast kinesin-8, Kip3, under varying loads and nucleotide conditions using high-precision optical tweezers. We found that single Kip3 motors spent up to 200 s at the microtubule end and were not stationary there but took several 8-nm forward and backward steps that were suppressed by loads. Interestingly, increased loads, similar to increased motor concentrations, also exponentially decreased the motors’ residence time at the microtubule end. On the microtubule lattice, loads also exponentially decreased the run length and time. However, for the same load, lattice run times were significantly longer compared to end residence times, suggesting the presence of a distinct force-dependent detachment mechanism at the microtubule end. The force dependence of the end residence time enabled us to estimate what force must act on a single motor to achieve the microtubule depolymerization speed of a motor ensemble. This force is higher than the stall force of a single Kip3 motor, supporting a collective force-dependent depolymerization mechanism that unifies the so-called “bump-off” and “switching” models. Understanding the mechanics of kinesin-8’s microtubule end activity will provide important insights into cell division with implications for cancer research.  相似文献   

12.
Duan ZW  Xie P  Li W  Wang PY 《PloS one》2012,7(4):e36071
Dimeric kinesin motor proteins such as homodimeric kinesin-1, homodimeric Ncd and heterodimeric Kar3/Vik1are composed of two head domains which are connected together by a rod-shaped, coiled-coil stalk. Despite the extensive and intensive studies on structures, kinetics, dynamics and walking mechanism of the dimers, whether their coiled-coils are unwound or not during their walking on the microtubule is still an unclear issue. Here, we try to clarify this issue by using molecular dynamics simulations. Our simulation results showed that, for Ncd, a large change in potential of mean force is required to unwind the coiled-coil by only several pairs of residues. For both Ncd and kinesin-1, the force required to initiate the coiled-coil unwinding is larger than that required for unfolding of the single [Formula: see text]-helix that forms the coiled-coil or is larger than that required to unwind the DNA duplex, which is higher than the unbinding force of the kinesin head from the microtubule in strong microtubule-binding states. Based on these results and the comparison of the sequence between the coiled-coil of Kar3/Vik1 and those of Ncd and kinesin-1, it was deduced that the coiled-coil of the Kar3/Vik1 should also be very stable. Thus, we concluded that the coiled-coils of kinesin-1, Ncd and Kar3/Vik1 are almost impossible to unwind during their walking on the microtubule.  相似文献   

13.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

14.
Gardner MK  Zanic M  Gell C  Bormuth V  Howard J 《Cell》2011,147(5):1092-1103
Microtubules are dynamic filaments whose ends alternate between periods of slow growth and rapid shortening as they explore intracellular space and move organelles. A key question is how regulatory proteins modulate catastrophe, the conversion from growth to shortening. To study this process, we reconstituted microtubule dynamics in the absence and presence of the kinesin-8 Kip3 and the kinesin-13 MCAK. Surprisingly, we found that, even in the absence of the kinesins, the microtubule catastrophe frequency depends on the age of the microtubule, indicating that catastrophe is a multistep process. Kip3 slowed microtubule growth in a length-dependent manner and increased the rate of aging. In contrast, MCAK eliminated the aging process. Thus, both kinesins are catastrophe factors; Kip3 mediates fine control of microtubule length by narrowing the distribution of maximum lengths prior to catastrophe, whereas MCAK promotes rapid restructuring of the microtubule cytoskeleton by making catastrophe a first-order random process.  相似文献   

15.
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.  相似文献   

16.
Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.  相似文献   

17.
In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.  相似文献   

18.
Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1 motors at controlled surface densities in a mechanically well-defined way. This helped us to study quantitatively how mechanical coupling between motors affects the efficiency of collective microtubule transport. We found that kinesin-1 constructs that lack most of the non-motor sequence slow each other down when collectively transporting a microtubule, depending on the number of interacting motors. This negative interference observed for a motor ensemble can be explained quantitatively by a mathematical model using the known physical properties of individual molecules of kinesin-1. The non-motor extension of kinesin-1 reduces this mutual interference, indicating that loose mechanical coupling between motors is required for efficient transport by ensembles of processive motors.  相似文献   

19.
During the cell cycle, kinesin-8s control the length of microtubules by interacting with their plus ends. To reach these ends, the motors have to be able to take many steps without dissociating. However, the underlying mechanism for this high processivity and how stepping is affected by force are unclear. Here, we tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads using optical tweezers. Surprisingly, both kinesin-8 motors were much weaker compared with other kinesins. Furthermore, we discovered a force-induced stick-slip motion: the motor frequently slipped, recovered from this state, and then resumed normal stepping motility without detaching from the microtubule. The low forces are consistent with kinesin-8s being regulators of microtubule dynamics rather than cargo transporters. The weakly bound slip state, reminiscent of a molecular safety leash, may be an adaptation for high processivity.  相似文献   

20.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. The yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not beenreported. We investigated Kip3's role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号