首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

4.
The early principles of the impact of aneuploidy were determined in plants and Drosophila. Here we summarize the classical results and then relate them to more current studies of gene expression in these taxa. As a general rule, aneuploidy is detrimental, even to the point of lethality, compared to changes in the dosage of the whole genome. Gene expression studies demonstrate an analogous relationship, namely that changes in dosage of chromosomes or chromosomal segments will modulate many genes but changes in whole ploidy have much less of an effect. One of the most common trans-acting effects is an inverse response of a gene to the altered dosage of a chromosomal segment. This effect can produce dosage compensation when it occurs for a gene that is also present in the varied region. Some open questions in the field of aneuploidy research are discussed.  相似文献   

5.
6.
Aneuploidy has profound effects on an organism,typically more so than polyploidy,and the basis of this contrast is not fully understood.A dosage series of the maize long arm of chromosome 1(1L)was used to compa re relative global gene expression in diffe rent types and degrees of aneuploidy to gain insights into how the magnitude of genomic imbalance as well as hypoploidy affects global gene expression.While previously available methods require a selective examination of specific genes,RNA sequencing provides a whole-genome view of gene expression in aneuploids.Most studies of global aneuploidy effects have concentrated on individual types of aneuploids because multiple dose aneuploidies of the same genomic region are difficult to produce in most model genetic organisms.The genetic toolkit of maize allows the examination of multiple ploidies and 1-4 doses of chromosome arms.Thus,a detailed examination of expression changes both on the varied chromosome arms and elsewhere in the genome is possible,in both hypoploids and hyperploids,compared with euploid controls.Previous studies observed the inverse trans effect,in which genes not varied in DNA dosage were expressed in a negative relationship to the varied chromosomal region.This response was also the major type of changes found globally in this study.Many genes varied in dosage showed proportional expression changes,though some were seen to be partly or fully dosage compensated.It was also found that the effects of aneuploidy were progressive,with more severe aneuploids producing effects of greater magnitude.  相似文献   

7.
Variation in gene expression is a fundamental aspect of human phenotypic variation. Several recent studies have analyzed gene expression levels in populations of different continental ancestry and reported population differences at a large number of genes. However, these differences could largely be due to non-genetic (e.g., environmental) effects. Here, we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that individuals from this population inherit variable proportions of two continental ancestries. We first relate gene expression levels in individual African Americans to their genome-wide proportion of European ancestry. The results provide strong evidence of a genetic contribution to expression differences between European and African populations, validating previous findings. Second, we infer local ancestry (0, 1, or 2 European chromosomes) at each location in the genome and investigate the effects of ancestry proximal to the expressed gene (cis) versus ancestry elsewhere in the genome (trans). Both effects are highly significant, and we estimate that 12±3% of all heritable variation in human gene expression is due to cis variants.  相似文献   

8.
Dosage Effects on Gene Expression in a Maize Ploidy Series   总被引:29,自引:3,他引:26       下载免费PDF全文
M. Guo  D. Davis    J. A. Birchler 《Genetics》1996,142(4):1349-1355
  相似文献   

9.
10.
11.
12.
Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of ~ 300 genes was induced at least two fold and that of ~ 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast.  相似文献   

13.
14.
Allelic variation in gene expression is common in humans and this variation is associated with phenotypic variation. In this study, we employed high-density single nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs to identify genes with allelic gene expression in cells from colorectal cancer cell lines. We found 2 monoallelically expressed genes (ERAP2 and MYLK4), 32 genes with an allelic imbalance in their expression, and 13 genes showing allele substitution by RNA editing. Among a total of 34 allelically expressed genes in colorectal cancer cells, 15 genes (44.1%) were associated with cis-acting eQTL, indicating that large portions of allelically expressed genes are regulated by cis-acting mechanisms of gene expression. In addition, potential regulatory variants present in the proximal promoter regions of genes showing either monoallelic expression or allelic imbalance were not tightly linked with coding SNPs, which were detected with allelic gene expression. These results suggest that multiple rare variants could be involved in the cis-acting regulatory mechanism of allelic gene expression. In the comparison with allelic gene expression data from Centre d'Etude du Polymorphisme Humain (CEPH) family B cells, 12 genes showed B-cell specific allelic imbalance and 1 noncoding SNP showed colorectal cancer cell-specific allelic imbalance. In addition, different patterns of allele substitution were observed between B cells and colorectal cancer cells. Overall, our study not only indicates that allelic gene expression is common in colorectal cancer cells, but our study also provides a better understanding of allele-specific gene expression in colorectal cancer cells.  相似文献   

15.
Genomic organization and chromosomal localization of a previously uncharacterizedD (Donor) locus inXiphophorus andPoecilia species was investigated using fluorescence in situ hybridization (FISH) and Southern blot analysis. Part of this region is thought to be involved in the recombination event leading to formation of theXmrk oncogene and it has recently been shown that this locus included two different genes, one with high homology to a zinc finger protein of the Krüppel type, and the other an unknown gene with high similarity to aCaenorhabditis elegans gene. FISH toXiphophorus chromosomes revealed that these two unrelated genes are closely linked and clustered at a unique chromosomal site. Southern blot hybridization patterns suggest that these genes exist in the genome as multiple copies. Furthermore, similar genomic organization profiles seem to prevail among other related fish. In particular, our FISH experiments reveal the existence of a conserved homologous chromosomal segment harboring the zinc finger protein sequence in several poeciliid fish.  相似文献   

16.

Key message

We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences.

Abstract

Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
  相似文献   

17.
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.  相似文献   

18.
19.
It is generally accepted that gene regulation serves an important role in determining the phenotype. To shed light on the evolutionary forces operating on gene regulation, previous studies mainly focused on the expression differences between species and their inter-specific hybrids. Here, we use RNA-Seq to study the intra-specific distribution of cis- and trans-regulatory variation in Drosophila pseudoobscura. Consistent with previous results, we find almost twice as many genes (26%) with significant trans-effects than genes with significant cis-effects (18%). While this result supports the previous suggestion of a larger mutational target of trans-effects, we also show that trans-effects may be subjected to purifying selection. Our results underline the importance of intra-specific analyses for the understanding of the evolution of gene expression.  相似文献   

20.
In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2) and FLOWERING WAGENINGEN (FWA) controlled by DNA methylation, and MEDEA (MEA) and PHERES1 (PHE1) controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号