首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees.  相似文献   

2.
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.  相似文献   

3.
Forage quality combines traits related to protein content and energy value. High-quality forages contribute to increase farm autonomy by reducing the use of energy or protein-rich supplements. Genetic analyses in forage legume species are complex because of their tetraploidy and allogamy. Indeed, no genetic studies of quality have been published at the molecular level on these species. Nonetheless, mapping populations of the model species M. truncatula can be used to detect QTL for forage quality. Here, we studied a crossing design involving four connected populations of M. truncatula. Each population was composed of ca. 200 recombinant inbred lines (RIL). We sought population-specific QTL and QTL explaining the whole design variation. We grew parents and RIL in a greenhouse for 2 or 3 seasons and analysed plants for chemical composition of vegetative organs (protein content, digestibility, leaf-to-stem ratio) and stem histology (stem cross-section area, tissue proportions). Over the four populations and all the traits, QTL were found on all chromosomes. Among these QTL, only four genomic regions, on chromosomes 1, 3, 7 and 8, contributed to explaining the variations in the whole crossing design. Surprisingly, we found that quality QTL were located in the same genomic regions as morphological QTL. We thus confirmed the quantitative inheritance of quality traits and tight relationships between quality and morphology. Our findings could be explained by a co-location of genes involved in quality and morphology. This study will help to detect candidate genes involved in quantitative variation for quality in forage legume species.  相似文献   

4.
Summary Morphological variation within organisms is integrated and often modular in nature. That is to say, the size and shape of traits tend to vary in a coordinated and structured manner across sets of organs or parts of an organism. The genetic basis of this morphological integration is largely unknown. Here, we report on quantitative trait loci (QTL) analysis of leaf and floral organ size in Arabidopsis thaliana. We evaluate patterns of genetic correlations among traits and perform whole-genome scans using QTL mapping methods. We detected significant genetic variation for the size and shape of each floral and leaf trait in our study. Moreover, we found large positive genetic correlations among sets of either flower or leaf traits, but low and generally nonsignificant genetic correlations between flower and leaf traits. These results support the hypothesis of independent floral and vegetative modules. We consider co-localization of QTL for different traits as support for a pleiotropic basis of morphological integration and modularity. A total of eight QTL affecting flower and three QTL affecting leaf traits were identified. Most QTL affected either floral or leaf traits, providing a general explanation for high correlations within and low correlations between modules. Only two genomic locations affected both flower and leaf growth. These results are discussed in the context of the evolution of modules, pleiotropy, and the putative homologous relationship between leaves and flowers.  相似文献   

5.
6.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

7.
大白菜部分形态性状的QTL定位与分析   总被引:13,自引:0,他引:13  
于拴仓  王永健  郑晓鹰 《遗传学报》2003,30(12):1153-1160
应用352个标记位点的大白菜AFLP和RAPD图谱和一套栽培品种间杂交获得的重组自交系群体,采用复合区间作图的方法对大白菜9个形态性状进行QTL定位及遗传效应研究。在14个连锁群上检测到50个QTL:其中控制株型的QTL有5个;控制株高的QTL有6个;控制开展度的QTL有5个;控制最大叶长的QTL有7个;控制最大叶宽的QTL有4个;控制叶形指数的QTL有6个;控制中肋长的QTL有7个;控制中肋宽的QTL有4个;控制抽苔的QTL有6个。另外,估算了单个QTL的遗传贡献率和加性效应。这将为大白菜品种改良中形态性状的分子标记辅助选择提供理论依据。  相似文献   

8.
Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures.  相似文献   

9.
Causal mutations affecting quantitative trait variation can be good targets for marker-assisted selection for carcass traits in beef cattle. In this study, linkage and linkage disequilibrium analysis (LDLA) for four carcass traits was undertaken using 19 markers on bovine chromosome 14. The LDLA analysis detected quantitative trait loci (QTL) for carcass weight (CWT) and eye muscle area (EMA) at the same position at around 50?cM and surrounded by the markers FABP4SNP2774C>G and FABP4_??sat3237. The QTL for marbling (MAR) was identified at the midpoint of markers BMS4513 and RM137 in a 3.5-cM marker interval. The most likely position for a second QTL for CWT was found at the midpoint of tenth marker bracket (FABP4SNP2774C>G and FABP4_??sat3237). For this marker bracket, the total number of haplotypes was 34 with a most common frequency of 0.118. Effects of haplotypes on CWT varied from a ?5-kg deviation for haplotype 6 to +8?kg for haplotype 23. To determine which genes contribute to the QTL effect, gene expression analysis was performed in muscle for a wide range of phenotypes. The results demonstrate that two genes, LOC781182 (p?=?0.002) and TRPS1 (p?=?0.006) were upregulated with increasing CWT and EMA, whereas only LOC614744 (p?=?0.04) has a significant effect on intramuscular fat (IMF) content. Two genetic markers detected in FABP4 were the most likely QTL position in this QTL study, but FABP4 did not show a significant effect on both traits (CWT and EMA) in gene expression analysis. We conclude that three genes could be potential causal genes affecting carcass traits CWT, EMA, and IMF in Hanwoo.  相似文献   

10.
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.  相似文献   

11.
Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.  相似文献   

12.
13.
14.
Cho IC  Park HB  Yoo CK  Lee GJ  Lim HT  Lee JB  Jung EJ  Ko MS  Lee JH  Jeon JT 《Animal genetics》2011,42(6):621-626
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F2 intercross between Landrace and Korean native pigs. Eight blood‐related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome‐wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood‐related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker‐assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.  相似文献   

15.
Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations. The populations resulted from crosses between the following accessions: Rapid cycling, Chinese cabbage, Yellow sarson, Pak choi, and a Japanese vegetable turnip variety. A total of 27 QTL affecting 20 morphological traits were detected, including eight QTL for flowering time, six for seed traits, three for growth-related traits and 10 for leaf traits. One major QTL was found for turnip formation. Principal component analysis and co-localization of QTL indicated that some loci controlling leaf and seed-related traits and those for flowering time and turnip formation might be the same. The major flowering time QTL detected in all populations on linkage group R02 co-localized with BrFLC2. One major QTL, controlling turnip formation, was also mapped at this locus. The genes that may underly this QTL and comparative analyses between the four populations and with Arabidopsis thaliana are discussed.  相似文献   

16.
Kassem  My.A.  Meksem  K.  Kang  C.H.  Njiti  V.N.  Kilo  V.  Wood  A.J.  Lightfoot  D.A. 《Plant and Soil》2004,260(1-2):197-204
Resistance to manganese toxicity is associated with some soybean (Glycine max) cultivars grown on acidic soils or in hydroponics. Previously random amplified polymorphic DNA (RAPD) markers had seemed to identify 4 quantitative trait loci (QTL), regions that might underlie resistance to manganese toxicity in a recombinant inbred line (RIL) population derived from ‘Essex’ x ‘Forrest’. Our objective was to identify microsatellite markers linked to these, or additional, QTL for resistance to manganese toxicity in a separate assay. Two hundred and forty microsatellite markers and 100 RILs were used to construct a map. The response of five plants per genotype to manganese was measured by leaf chlorosis (scored from 0–5) and root necrosis (scored from 0–5) from 7–28 days after treatment with 125 μM of manganese in hydroponics. The experiment was repeated. ANOVA and MapMaker/QTL were used to identify regions underlying the responses. Three genomic regions on different linkage groups were found to contain QTL for resistance to necrosis during manganese toxicity. The regions located on linkage groups C2 (BARC_S att291),I(BARC_S att239)andG(OP_O EO2)wereeachsignificantlyassociated(P<0.005, R 2=20%) with root necrosis at 7 days after treatment. The regions all derived the beneficial allele from Essex. One of the previously identified RAPD associated root necrosis QTL was identified in this new study. However, no QTL for leaf chlorosis were detected (P<0.005) and none of the RAPD identified leaf chlorosis QTL could be identified. We conclude that root and leaf resistance to manganese toxicity are environmentally sensitive quantitative traits determined by separate loci of different number and magnitude of effect.  相似文献   

17.
Studies of the relationship between DNA variation and gene expression variation, often referred to as “expression quantitative trait loci (eQTL) mapping”, have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several modules corresponding to possibly different biological functions or primary and secondary responses to regulatory perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data.  相似文献   

18.
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus. We found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsible for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output. The altered gene expression pattern caused by this allele suggests that the aggregation behavior might cause a weak starvation state, which is known to reduce growth rate and fecundity. Importantly, we show that variation in npr-1 causes each of these phenotypic differences through behavioral avoidance of ambient oxygen concentrations. These results suggest that variation in npr-1 has broad pleiotropic effects mediated by altered exposure to bacterial food.  相似文献   

19.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号