首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
《Marine Micropaleontology》2007,63(4):211-234
Two detailed records (NSF and 05NSC, Sidi Nasseur, Tunisia) across the Danian/Selandian (D/S) boundary were investigated for their micropaleontological content. Calcareous nannofossils and planktic foraminifera provided a biostratigraphic framework. The interval spans part of planktic foraminiferal Zone P2, Subzone P3a and part of Subzone P3b. This corresponds to calcareous nannoplankton Zone NP4. Using a more detailed nannofossil zonation the studied section spans part of Zone NTp6, Zone NTp7a and part of NTp7b. Quantitative ostracod and qualitative benthic foraminiferal data were used to characterize environmental changes across the D/S boundary. The two subsections have yielded a total of 50 ostracod taxa. The ostracod assemblage of the entire section belongs to the Southern Tethyan Type showing subtle but distinct changes up section. Based on statistical analysis of the quantitative ostracod data, faunal changes at a glauconitic maker bed (P3a/P3b boundary) were demonstrated. The local Reticulina proteros assemblage, with the typical species R. proteros, Oertliella vesiculosa and Cytheroptheron lekefense, is gradually replaced by the Protobuntonia nakkadii assemblage, with the typical species Cristaeleberis arabii, Xestoleberis tunisiensis, Cytheropteron sp. and P. nakkadii, across the glauconitic bed. The benthic foraminifera also demonstrated distinct changes at this marker bed. The changes in ostracods and foraminifera are related to changes in paleoproductivity and an overall relative sea-level fall.The lithological and faunal changes at the P3a/P3b zone boundary within the Sidi Nasseur sections seem to correspond to the D/S boundary in the type region in Danmark and are characterized by a significant hiatus, yielding this section not suitable as a GSSP candidate for this boundary.  相似文献   

2.
This study is a preliminary quantitative analysis of Paleocene calcareous nannofossil assemblages of the Tenida area (Egypt) in order to establish a detailed biostratigraphic framework as well as to reconstruct the paleoclimatic trends. A total of 48 samples with an average sample spacing of 1.5 m allowed the identification of 63 calcareous nannofossil species belonging to 19 different genera. The preservation of the studied samples varies from poor to moderate and is characterized by the frequent presence of small frangible placoliths, and nannoliths. This study recognizes three calcareous nannofossil biozones in the Danian-Thanetian time interval; Chiasmolithus danicus (NP3) Zone, Ellipsolithus macellus (NP4) Zone, and Heliolithus kleinpellii (NP6) Zone. Moreover, the multivariate statistical analysis of the calcareous nannofossil communities reveals a relationship between the distribution of these nannofossil assemblages and variations in paleoclimatic trends. Accordingly, the relative abundances of Coccolithus pelagicus in addition to nine calcareous nannofossil genera along with the diversity and preservation indices of calcareous nannofossil elements have been used to elucidate changes in paleoclimatic trends. Based on the cyclic change from cold to warm climates, it was possible to subdivide the Paleocene Period recorded in the Tenida section into four paleoclimatic intervals. The oldest is a global cooling trend spanning 2.01 Myr long, starting in the early Paleocene (Danian) during the deposition of the lower part of the Kharga Shale Member. This cooling trend is followed by a ~ 0.56 Myr warming trend during deposition of the middle part of the Kharga Shale Member that was followed by a return to a cooling mode, with an estimated duration of roughly 1.67 Myr. The last interval includes a 0.39 Myr long period at the Selandian/Thanetian boundary interval, which is dominated by a global warming trend during deposition of the upper part of the Upper Kharga Shale Member.  相似文献   

3.
In the present study, we document paleoenvironmental change across the Danian–Selandian transition (planktic foraminiferal interval P2–P3b; calcareous nannofossil Zone NP4, Subzones NTp6–NTp8A; 61–59 Ma) in NW Tunisia. Diversifications of Paleogene planktic foraminifera with the evolution of the muricate and photosymbiotic lineages Morozovella, Acarinina and Igorina and of the biostratigraphically important nannofossils genus Fasciculithus are recorded within this interval. The present study aims to understand early Paleogene environmental changes in the southern Tethys, by analyzing the evolution of surface-water and–to a lesser extent–seafloor conditions. Three localities were investigated: Ain Settara, Elles and El Kef, all representing outer neritic deposition in the same basin, the Tunisian Trough. Paleoenvironmental changes are explored by combining planktic foraminiferal, organic dinocyst and calcareous nannofossils assemblages and several proxy parameters (planktic/benthic ratio, numbers of planktic foraminifera per gram, peridinioid/gonyaulacoid ratio; terrestrial/marine palynomorph ratio). In addition, also some geochemical parameters (calcite content and stable isotopes) are examined. Our records indicate that the environment evolved from an initially oligotrophic, open marine, deep outer neritic setting in P2–P3a towards a shallower and nutrient-rich setting from the base of Subzone P3b. This change is seen in the foraminiferal assemblages, with the substitution of Praemurica by Morozovella among the planktic foraminifera and an upward decrease in deeper benthic taxa. Also the organic-dinocyst assemblages show a peak of peridinioid cysts (Cerodinium and Lejeunecysta). Associated to these dinocyst assemblages, the lowest occurrence of Apectodinium is recorded, which seem to have evolved in this region, possibly in response to enhanced nutrient levels on the shelf. Additionally, a distinct change in calcareous nannofossil assemblages is also described, marked by the lowest appearance of Chiasmolithus edentulus, the lowest consistent occurrence of Fasciculithus and a slight increase in near-shore taxa (essentially Pontosphaera).This project provides an accurate understanding of paleoenvironmental change across the Danian–Selandian transition in Tunisia. Especially, integrating different proxies demonstrates a paleobathymetric shallowing from the Danian to the Selandian, associated to increase surface paleoproductivity. Furthermore, the results are compared with those from other localities along the Southern Tethyan margin (Egypt and Jordan) and a more regional paleoclimatic/paleoceanographic perturbation in the Southern Tethys is suggested.  相似文献   

4.
In this paper we present the effects of different tracemakers on the redistribution of calcareous nannofossils throughout the K-Pg boundary at the Bidart section (SW France), along with their consequences for our knowledge of the K-Pg boundary event. Danian calcareous nannofossil assemblages are present in Maastrichtian samples due to infiltration into dark trace fossil infillings proceeding from the earliest Paleogene. This is evidenced by the appearance of abundant paleogene calcareous nannofossils just below the K-Pg boundary, showing the relevance of the trace fossil infillings in the context of the K-Pg boundary event.  相似文献   

5.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

6.
The Gebel Qreiya and nearby Wadi Hamama sections of the central Eastern Desert are among the most complete K/T boundary sequences known from Egypt. The two sections were analyzed spanning an interval from l.83 Myr below to about 3 Myr above the K/T boundary. A 1-cm-thick red clay layer at the K/T boundary at Gebel Qreiya contains an Ir anomaly of 5.4 ppb. The high-resolution study and well-preserved nannoflora provide good age control and the first quantitative records of calcareous nannofossil assemblages for paleoecological interpretations across the K/T transition in Egypt. Four zones (Micula murus, Micula prinsii, NP1, and NP2) were distinguished and correlated with other nannofossil and planktonic foraminiferal zonations that are broadly applicable for the eastern Tethys region. Latest Maastrichtian assemblages are abundant and diverse, though Cretaceous species richness progressively decreased across the K/T boundary. Dominant species include Arkhangelskiella cymbiformis, Micula decussata and Watznaueria barnesae, with high abundance of dissolution-resistant M. decussata reflecting periods of high environmental stress. Thoracosphaera blooms mark the K/T boundary and are followed by an acme of the opportunistic survivor Braarudosphaera bigelowii, the first appearance of the new Tertiary species Cruciplacolithus primus, and an acme of Coccolithus cavus/pelagicus. These successive abundance peaks provide the basis for subdivision of the Early Danian Zones NP1 and NP2 into five subzones. Correlation of selected nannofossil taxa from the Egyptian sections with those from various onshore marine and deep-sea sections provides insights into their paleoenvironmental and paleoecological affinities.  相似文献   

7.
This paper presents a detailed calcareous nannofossil biostratigraphy of the entire Lutetian of the Agost section (Betic Cordillera, SE Spain). This investigation integrates and improves on previous study performed through the Ypresian/Lutetian boundary by the authors on this succession. The new revision of the integrated bio‐magnetobiochronology of the Early/Middle Eocene interval revealed highly diversified calcareous nannofossil assemblages, characterizing more than 8 Myr of climatic variability. The studied interval spans from Zone CP11 to Subzone CP14a and from the upper part of Zone NP13 to the base of Zone NP16 of calcareous nannofossil standard zonations. The revision of the calcareous nannofossil content enabled the identification of numerous secondary events which greatly improved the stratigraphic resolution of this time interval. An important re‐organization of the nannoflora was observed during the Y/L transition, when Reticulofenestra and Dictyococcites (Noelaerhabdaceae) became the most important genera in terms of abundance and dispersal, dominating the Middle Eocene nannofossil assemblages and replacing Toweius and Discoaster taxa characteristic of the lower Eocene. Pentaliths and Blackites experience a great expansion and diversification, whereas Discoaster and Chiasmolithus which are well diversified but never abundant during the Lutetian show a slow turnover. A reassessment of the major bio‐events observed in the Noelaerhabdaceae family as well as revision and correlation of these events with the classical Italian sections (Contessa and Bottaccione) are presented. The new results show that biostratigraphic problems related to the Middle Eocene chronology are not limited to the correlation between calcareous nannofossils and planktonic foraminiferans at the Y/L transition but extend to calcareous nannofossil events commonly used for correlating the Bartonian.  相似文献   

8.
珠江口盆地西部保存记录了渐新世以来较为丰富的钙质超微化石,为生物地层学的系统研究奠定了基础。笔者以5口钻井为依托,根据经典钙质超微化石分带、国际年代地层表(2012,2015)以及ODP184航次等建立的西太平洋最佳深海地层剖面和微体古生物分析成果,识别出NP24—NN16共14个钙质超微化石带,重新厘定了研究区的生物事件年龄,建立了珠江口盆地西部渐新世以来钙质超微化石年代地层格架。并讨论了岩石地层单位的时代归属问题,将Sphenolithus ciperoensis,Zygrhablithus bijugatus,Reticulofenestra bisecta的末现面以及Helicosphaera carteri,Cyclicargolithus abisectus的初现面作为古近系与新近系界线的标志生物化石。  相似文献   

9.
Marly sediments of the early Messinian Abad Member of the Turre Formation from the northeastern sector of the Carboneras-Nijar Basin (southern Spain) have yielded a rich fossil assemblage, of which 60 taxa are documented herein. Besides nannoflora and microfauna, this assemblage includes the first autochthonous macrofauna described from the Abad Member. Based on the calcareous nannofossil assemblage, in particular the occurrence of the zonal index taxon Amaurolithus primus, the sediments are assigned to the Mediterranean calcareous nannofossil zone CNM17, corresponding to the latest Tortonian to earliest Messinian interval. This matches the age range generally reported for the Abad Member. Palaeoecological evidence from calcareous nannofossils (20 autochthonous taxa), planktic and benthic foraminifera (12 taxa), Porifera (3 taxa), Octocorallia (Keratoisis), Serpulidae (4 taxa), Bivalvia (5 taxa), Gastropoda (2 taxa), Brachiopoda (7 taxa), Cirripedia (Faxelepas) and Vertebrata (5 taxa) indicates an upper bathyal environment with an influx of neritic elements for the Abad Member near Carboneras. Additionally, several faunal components may represent allochthonous/parautochthonous elements from adjacent habitats, which were transported into the deep marine setting by turbiditic mass flows. Although similarities exist, the fossil assemblage from the marls is compositionally significantly different from the biota previously documented from a nearby exposed olistostrome, the ‘red breccia’. Similar fossil assemblages from the Mediterranean have so far mainly been reported from the Pliocene-Pleistocene of southern Italy and Greece. The Carboneras fauna thus adds to our knowledge of the development of these habitats and their biota prior to the Messinian salinity crisis. Beyond the novel palaeoenvironmental data, the range of the dyscoliid brachiopod Ceramisia meneghiniana, previously known only from the Pliocene of Italy, is extended to the Miocene of Spain. The cirripede crustacean Pycnolepas paronai De Alessandri, 1895 is transferred to the hitherto monospecific genus Faxelepas Gale, 2015, whereby the range of the latter (previously Maastrichtian to Danian) is extended to the late Miocene.  相似文献   

10.
It has been clearly demonstrated that past climate fluctuations are recorded in marine sedimentary rocks. However, for many reasons, extracting the climate signature is difficult. Initial low-field mass-specific magnetic susceptibility (MS) data can potentially provide a measure of climate variability and thus become a proxy characterizing climate cyclicity in a wide range of marine sediments. This is due to the fact that climate change (warm, wet versus cold, dry) drives cyclic weathering and erosional variations that are recorded as the detrital components of marine sediment that dominates the MS. To test the utility of MS to yield climate proxies in marine sediments showing major changes in lithology, we have sampled the well-studied Danian/Selandian boundary interval (Lower Paleocene) at Zumaia (Zumaya), Spain. This interval represents a dramatic, rapid lithologic change from Danian carbonate-dominated limestone–marl couplets to a detrital-dominated marl-shale sequence in the Selandian, indicating onset of a major regression-erosional event beginning in the lowest Selandian. Sampling included a continuous sequence from the uppermost Danian Stage (3.71 m) into the lowermost Selandian Stage (5.2 m), a suite of 175 samples collected at 5 cm intervals. Our results indicate that MS measurements reflect changes in detrital sediment at the site, first by closely tracking high-frequency limestone–marl couplets, second with a large, rapid shift toward higher MS values beginning at the Danian/Selandian boundary resulting from a major regression, and third by tracking low-frequency climate-controlled variations known to have occurred during deposition of these sediments. MS zones developed from the cyclicity observed throughout the sequence, supported by time series analysis using Fourier Transform (FT) methods applied to the MS results, exhibit Milankovitch cyclicities in the precessional (19–24 kyr), obliquity (41–54 kyr) and eccentricity bands (100 kyr). This is in excellent agreement with previous FT work on the section using measured variations in cyclic bed thicknesses. With the new MS data set and FT results, we then developed a Floating Point Time Scale (FPTS) for the sequence sampled (covering  550 kyr through the Danian/Selandian boundary interval), yielding a time-scale resolution for the uppermost Danian to  10,000 years. However, only the  100,000 year eccentricity band for the Selandian is sufficiently well developed for an FPTS estimate, and yields a time-scale resolution of  50,000 years. Our test of the utility of MS data sets in this varying depositional setting demonstrated that these data can provide a climate proxy that is not disrupted by large lithologic changes.  相似文献   

11.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

12.
The sediments at the Cretaceous-Tertiary boundary record a major crisis of pelagic carbonate producers (calcareous nannofossils and planktonic foraminifera). Nevertheless, Maastrichtian-like nannofossils are found in lowermost Danian sediments. Their origin (reworked vs. survivors) is still under debate. A recently developed protocol leading to separation of the various calcareous components included in the lowermost Danian sediments allows evaluation of the nannofossil isotopic signatures across the Cretaceous-Paleocene boundary. Maastrichtian-like nannofossils found in Danian sediments record isotopic ratios (carbon and oxygen) similar to the Cretaceous ones. These results provide evidence that Maastrichtian-like nannofossils are mostly reworked at Bidart.  相似文献   

13.
The biostratigraphy (larger foraminifers, dasycladaleans), microfacies, sedimentology, and geochemistry (δ 13C, strontium-isotope stratigraphy) of a continuous, 148-m-thick section of shallow-water platform carbonates that contain the Cretaceous/Paleogene (K/P) boundary were analyzed. The boundary is constrained within a 7-m-thick interval, between the last occurrence of Maastrichtian larger benthic foraminifers and the first occurrence of Danian benthic foraminifers. Although this interval is intensively dolomitized, there is no sedimentological evidence of a major hiatus at the K/P boundary. The correlation of bulk rock δ 13C values with stable isotope data from DSDP Site 384 (NW Atlantic Ocean) supports this interpretation and indicates a Selandian age for the top of the section. The Qalhat section is a unique example of a carbonate platform that has recorded persisting open marine environmental conditions across the K/P boundary (Maastrichtian–Selandian), as indicated by the abundance of rudists, larger benthic foraminifers (Maastrichtian), calcareous algae and scleractinian corals.  相似文献   

14.
In this study we present the results of a detailed analysis on calcareous nannofossil assemblages from sediment cores of ODP Site 1263 (Southern East Atlantic, Walvis Ridge). This section represents one of the few complete deep-sea sections that document the Paleocene–Eocene Thermal Maximum (PETM) in the pelagic realm. The PETM transient event was characterized by a brief, but intense interval of global warming, a global negative carbon isotope excursion (CIE), and widespread dissolution of seafloor carbonate sediments. Paired analysis at polarizing light microscope (LM) and Scanning Electron Microscope (SEM) documents the different “behavior” of nannofossils through the different phases of the PETM, at the onset of CIE, within the CIE, and during the recovery interval. The presence of anomalous specimens and morphotypes within some nannofossil taxa, recorded during previous LM high resolution analyses, has been further investigated in selected samples at the SEM. Besides the known representatives of the CIE-PETM “excursion nanno-flora”, as Rhomboaster calcitrapa group and Discoaster anartios, the analysis revealed the presence of peculiar morphotypes of Fasciculithus and deformed specimens of Discoaster nobilis group, Discoaster mediosus and Discoaster multiradiatus that are considered related to the anomalous amount of CO2 in the ocean-atmosphere system during the early phase of PETM. Comparative analyses were performed in few selected samples from other PETM sections located at different latitudes in the Atlantic and Pacific oceans. Although the anomalous geochemical conditions during the PETM-CIE interval seem to have had some influence on the nannofossil production, calcification and assemblage composition, it results that local productivity together with post depositional (diagenetic) conditions were additional important controlling factors on nannofossil assemblages. Preliminary data from Eocene Thermal Maximum 2 (ETM2 or Elmo) suggest that nannofossil malformations are not exclusive of the PETM, and are associated to other episodes of perturbation of the C cycle.  相似文献   

15.
A major deterioration in global climate occurred through the Eocene–Oligocene time interval, characterized by long-term cooling in both terrestrial and marine environments. During this long-term cooling trend, however, recent studies have documented several short-lived warming and cooling phases. In order to further investigate high-latitude climate during these events, we developed a high-resolution calcareous nannofossil record from ODP Site 748 Hole B for the interval spanning the late middle Eocene to the late Oligocene (~ 42 to 26 Ma). The primary goals of this study were to construct a detailed biostratigraphic record and to use nannofossil assemblage variations to interpret short-term changes in surface-water temperature and nutrient conditions. The principal nannofossil assemblage variations are identified using a temperate-warm-water taxa index (Twwt), from which three warming and five cooling events are identified within the middle Eocene to the earliest Oligocene interval. Among these climatic trends, the cooling event at ~ 39 Ma (Cooling Event B) is recorded here for the first time. Variations in fine-fraction δ18O values at Site 748 are associated with changes in the Twwt index, supporting the idea that significant short-term variability in surface-water conditions occurred in the Kerguelen Plateau area during the middle and late Eocene. Furthermore, ODP Site 748 calcareous nannofossil paleoecology confirms the utility of these microfossils for biostratigraphic, paleoclimatic, and paleoceanographic reconstructions at Southern Ocean sites during the Paleogene.  相似文献   

16.
The calcareous nannofossil assemblage from ODP Site 1240 in the equatorial upwelling of the Eastern Pacific was analysed for the last 560 Ka. The chronological framework was set with a combination of isotopic stratigraphy, nannofossil biostratigraphy and one paleomagnetic event.  相似文献   

17.
K?dzierski, M., Rodríguez‐Tovar, F.J. & Uchman, A. 2011: Vertical displacement and taphonomic filtering of nannofossils by bioturbation in the Cretaceous–Palaeogene boundary section at Caravaca, SE Spain. Lethaia, Vol. 44, pp. 321–328. At the Caravaca section, SE Spain, the position of the Cretaceous–Palaeogene (K–Pg) boundary is well‐defined, with multidisciplinary datasets from a thin rusty layer at the base of the 10 cm dark boundary layer. Nannoplankton assemblages containing the Danian taxon Neochiastozygus sp. and enriched in Thoracosphaera spp. are displaced below the K–Pg boundary into the trace fossils Zoophycos, Thalassinoides and Chondrites. These trace fossils are filled with dark‐coloured sediments of the dark boundary layer. The nannofossil assemblage from the 1‐cm thick interval below the boundary, enriched in Thoracosphaera spp. and Braarudosphaera spp., may have been displaced by Chondrites tracemakers, the traces of which are abundant in this interval. The downward transport of the Danian nannofossils into the Maastrichtian by the tracemakers seems to be one of the common mechanisms responsible for their apparent appearance below the K–Pg boundary. The dark boundary layer contains very rare Danian specimens and abundant Maastrichtian nannofossils. The Maastrichtian taxa were most likely conveyed up on to the seafloor by tracemakers during the Danian. The redistribution of nannoplankton down and up across the rusty layer (K–Pg), challenges the usefulness of nannofossils for high‐resolution stratigraphy of the K–Pg boundary. □Nannoplankton, Cretaceous–Palaeogene boundary event, biogenic mixing, trace fossils.  相似文献   

18.
Calcareous nannofossils from the Brendola section permit recognition of the NP 19–20 zone. The calcareous nannofossil assemblages of this area indicate an inner shelf marine environment and the scarcity of discoasters and sphenoliths during late Priabonian time in this area is attributed to the very shallow nature of the association and not to the temperature dependence of this group. Systematic details concerningOrthozygus aureus and its relations withHolodiscolithus macroporus, Clathrolithus minutus andZygolithus fiscus are given.  相似文献   

19.
本文简要报道了发现于伊朗卡尚地区古近系的介形类,计16属6种、8比较种、9未定种及1亲近种。根据介形类化石组合面貌,并结合钙质超微、沟鞭藻和有孔虫化石组合,认为含介形类化石的地层时代为始新世至渐新世,推测其沉积环境为正常浅海大陆架环境,而且为温暖浅海内陆架。  相似文献   

20.
Based on calcareous nannofossil assemblages identified in four expanded and well-dated sections from the Basque-Cantabrian Basin, the main objective of this paper is to improve the knowledge of the Pliensbachian calcareous nannofossil events, and to calibrate these events to the ammonite zones established for this area. The semiquantitative analysis of more than 140 smear slides from the Tudanca and Santotis sections, and the re-analysis of more than 200 smear slides from the Camino and San Andrés sections, have been carried out in order to describe the succession of calcareous nannofossil assemblages. Related to their composition changes, we have recognized and calibrated to the ammonite zones two main events: the first occurrences (FOs) of Similiscutum cruciulus and Lotharingius hauffii, and six secondary events: the FOs of Biscutum novum, Biscutum grande, Biscutum finchii, Lotharingius barozii and the FCOs (first common occurrences) of Calcivascularis jansae and L. hauffii. In the Camino and San Andrés sections, we also identify the FOs of Biscutum dubium, Bussonius prinsii and Lotharingius sigillatus. The obtained data allow us to assess the degree of reproducibility of the Pliensbachian calcareous nannofossil events in the studied area. The biohorizon succession recognized in the Basque-Cantabrian Basin are compared to those proposed for NW Europe, Lusitanian Basin, Italy and Southern France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号