首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome‐wide association (GWA) studies can identify quantitative trait loci (QTL) putatively underlying traits of interest, and nested association mapping (NAM) can further assess allelic series. Near‐isogenic lines (NILs) can be used to characterize, dissect and validate QTL, but the development of NILs is costly. Previous studies have utilized limited numbers of NILs and introgression donors. We characterized a panel of 1270 maize NILs derived from crosses between 18 diverse inbred lines and the recurrent inbred parent B73, referred to as the nested NILs (nNILs). The nNILs were phenotyped for flowering time, height and resistance to three foliar diseases, and genotyped with genotyping‐by‐sequencing. Across traits, broad‐sense heritability (0.4–0.8) was relatively high. The 896 genotyped nNILs contain 2638 introgressions, which span the entire genome with substantial overlap within and among allele donors. GWA with the whole panel identified 29 QTL for height and disease resistance with allelic variation across donors. To date, this is the largest and most diverse publicly available panel of maize NILs to be phenotypically and genotypically characterized. The nNILs are a valuable resource for the maize community, providing an extensive collection of introgressions from the founders of the maize NAM population in a B73 background combined with data on six agronomically important traits and from genotyping‐by‐sequencing. We demonstrate that the nNILs can be used for QTL mapping and allelic testing. The majority of nNILs had four or fewer introgressions, and could readily be used for future fine mapping studies.  相似文献   

2.
Vitamin E refers to eight distinct compounds collectively known as tocochromanols and can be further divided into two classes, tocotrienols and tocopherols. Tocochromanols are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Enhancing vitamin E content of maize through plant breeding has important implications for human and animal nutrition. Four inbred lines exhibiting unique variation for tocochromanol compounds were chosen from the Goodman maize diversity panel to construct two biparental mapping populations (N6xNC296 and E2558xCo125). The N6xNC296 population was developed to analyze segregation for α-tocopherol and α-tocotrienol content. The E2558WxCo125 population was developed to analyze segregation for the ratio of total tocotrienols to tocopherols. The tocochromanol variation in two replicates of each population was quantified using liquid chromatography-diode array detection. Using high-density linkage mapping, novel quantitative trait loci (QTL) in the N6xNC296 population were mapped using tocopherol ratio traits. These QTL contain the candidate gene homogentisate phytyltransferase (ZmVTE2) within the respective support intervals. This locus was not mapped in a previous genome-wide association study that analyzed tocochromanols in the Goodman diversity panel. Transgressive segregation was observed for γ- and α-tocochromanols in these populations, which facilitated QTL identification. These QTL and transgressive segregant families can be used in selection programs for vitamin E enhancement in maize. This work illustrates the complementary nature of biparental mapping populations and genome-wide association studies to further characterize genetic variation of tocochromanol content in maize grain.  相似文献   

3.
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.  相似文献   

4.
Yu J  Holland JB  McMullen MD  Buckler ES 《Genetics》2008,178(1):539-551
We investigated the genetic and statistical properties of the nested association mapping (NAM) design currently being implemented in maize (26 diverse founders and 5000 distinct immortal genotypes) to dissect the genetic basis of complex quantitative traits. The NAM design simultaneously exploits the advantages of both linkage analysis and association mapping. We demonstrated the power of NAM for high-power cost-effective genome scans through computer simulations based on empirical marker data and simulated traits with different complexities. With common-parent-specific (CPS) markers genotyped for the founders and the progenies, the inheritance of chromosome segments nested within two adjacent CPS markers was inferred through linkage. Genotyping the founders with additional high-density markers enabled the projection of genetic information, capturing linkage disequilibrium information, from founders to progenies. With 5000 genotypes, 30-79% of the simulated quantitative trait loci (QTL) were precisely identified. By integrating genetic design, natural diversity, and genomics technologies, this new complex trait dissection strategy should greatly facilitate endeavors to link molecular variation with phenotypic variation for various complex traits.  相似文献   

5.

Key message

Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement.

Abstract

In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (?log10(P)?>?4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P?<?0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.
  相似文献   

6.
7.
Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.  相似文献   

8.
雌穗是玉米重要的生殖器官,雌穗发育决定成熟果穗大小及单穗粒重,进而直接影响玉米产量。雌穗性状主要包括穗长、穗粗、穗行数、行粒数、穗重、单穗粒重等,均为多基因控制的数量遗传性状,且其遗传结构各不相同。解析雌穗性状的遗传基础,优化雌穗结构,是玉米增产的重要途径。前人通过数量性状位点(quantitative trait locus mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法,已经鉴定出较多雌穗性状相关的遗传位点,但是目前已鉴定功能的基因较少,所建立的遗传位点一致性图谱并不完整,因此难以全面揭示雌穗性状遗传结构。通过综合前人雌穗性状遗传定位进展,现将已鉴定QTL位点和显著关联SNP整合至玉米B73参考基因组V4版本,并鉴定出雌穗性状定位热点区间,对深入解析雌穗性状遗传结构、指导雌穗性状基因克隆和理解雌穗发育分子机制均具有重要意义。  相似文献   

9.
Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheritance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL). In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double haploids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL analysis. However, such populations have major limitations like predominantly relying on the recombination events taking place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping resources like association mapping, nested association mapping and multiparent intercross populations potentially address the major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has been discussed here. In such populations both linkage and association analysis can be conductted without encountering the limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they require longer time and more resource to be generated and they are likely to show extensive segregation for developmental traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to bring a paradigm shift towards QTL analysis in plant species.  相似文献   

10.
ABSTRACT: BACKGROUND: Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software. RESULTS: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits. CONCLUSIONS: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.  相似文献   

11.
F Ogut  Y Bian  P J Bradbury  J B Holland 《Heredity》2015,114(6):552-563
Quantitative trait locus (QTL) mapping has been used to dissect the genetic architecture of complex traits and predict phenotypes for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint analysis of multiple biparental families offers an alternative approach to QTL mapping with a wider scope of inference. Joint-multiple population analysis should have higher power to detect QTL shared among multiple families, but may have lower power to detect rare QTL. We compared prediction ability of single-family and joint-family QTL analysis methods with fivefold cross-validation for 6 diverse traits using the maize nested association mapping population, which comprises 25 biparental recombinant inbred families. Joint-family QTL analysis had higher mean prediction abilities than single-family QTL analysis for all traits at most significance thresholds, and was always better at more stringent significance thresholds. Most robust QTL (detected in >50% of data samples) were restricted to one family and were often not detected at high frequency by joint-family analysis, implying substantial genetic heterogeneity among families for complex traits in maize. The superior predictive ability of joint-family QTL models despite important genetic differences among families suggests that joint-family models capture sufficient smaller effect QTL that are shared across families to compensate for missing some rare large-effect QTL.  相似文献   

12.
株高和穗位高是玉米重要育种性状,直接影响植株的养分利用效率及抗倒伏性,进而影响玉米产量。玉米株高和穗位高属于典型数量性状,目前通过数量性状位点(quantitative trait loci mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法已挖掘到较多相关遗传位点,通过QTL精细定位及利用突变体克隆了一些调控株高和穗位高关键基因。但是由于各研究组所利用的群体类型和大小、标记类型和密度以及统计方法不同,所鉴定QTL差异较大,单个研究难以揭示玉米株高和穗位高遗传结构。早期QTL定位的结果多以遗传距离来展示,不同时期GWAS研究所使用参考基因组版本不同,这进一步增加了借鉴和利用前人研究结果的难度。首次将目前已鉴定株高和穗位高遗传定位信息统一锚定至玉米自交系B73参考基因组V4版本,构建了株高和穗位高性状定位的一致性图谱,并鉴定出可被多个独立研究定位的热点区间。进一步对已克隆玉米株高和穗位高调控基因进行总结与分类,揭示株高和穗位高性状调控机制,对深度解析株高和穗位高遗传结构、指导基因克隆和利用分子标记辅助选择优化玉米株高和穗位高性状均具有重要意义。  相似文献   

13.
Genetic dissection of grain weight in bread wheat was undertaken through both genome-wide quantitative trait locus (QTL) interval mapping and association mapping. QTL interval mapping involved preparation of a framework linkage map consisting of 294 loci {194 simple sequence repeats (SSRs), 86 amplified fragment length polymorphisms (AFLPs) and 14 selective amplifications of microsatellite polymorphic loci (SAMPL)} using a bi-parental recombinant inbred line (RIL) mapping population derived from Rye Selection111 × Chinese Spring. Using the genotypic data and phenotypic data on grain weight (GW) of RILs collected over six environments, genome-wide single locus QTL analysis was conducted to identify main effect QTL. This led to identification of as many as ten QTL including four major QTL (three QTL were stable), each contributing >20% phenotypic variation (PV) for GW. The above study was supplemented with association mapping, which allowed identification of 11 new markers in the genomic regions that were not reported earlier to harbour any QTL for GW. It also allowed identification of closely linked markers for six known QTL, and validation of eight QTL reported earlier. The QTL identified through QTL interval mapping and association mapping may prove useful in marker-assisted selection (MAS) for the development of cultivars with high GW in bread wheat.  相似文献   

14.

Key message

Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits.

Abstract

Two association mapping panels were analysed for marker–trait associations to identify quantitative trait loci (QTL). The first panel comprised 205 historical and contemporary tetraploid potato cultivars that were phenotyped in field trials at two locations with two replicates (the academic panel). The second panel consisted of 299 potato cultivars and included recent breeds obtained from five Dutch potato breeding companies and reference cultivars (the industrial panel). Phenotypic data for the second panel were collected during subsequent clonal selection generations at the individual breeding companies. QTL were identified for 19 agro-morphological and quality traits. Two association mapping models were used: a baseline model without, and a more advanced model with correction for population structure and genetic relatedness. Correction for population structure and genetic relatedness was performed with a kinship matrix estimated from marker information. The detected QTL partly not only confirmed previous studies, e.g. for tuber shape and frying colour, but also new QTL were found like for after baking darkening and enzymatic browning. Pleiotropic effects could be discerned for several QTL.  相似文献   

15.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

16.
Genetic association mapping and genome organization of maize   总被引:31,自引:0,他引:31  
Association mapping, a high-resolution method for mapping quantitative trait loci based on linkage disequilibrium, holds great promise for the dissection of complex genetic traits. The recent assembly and characterization of maize association mapping panels, development of improved statistical methods, and successful association of candidate genes have begun to realize the power of candidate-gene association mapping. Although the complexity of the maize genome poses several significant challenges to the application of association mapping, the ongoing genome sequencing project will ultimately allow for a thorough genome-wide examination of nucleotide polymorphism-trait association.  相似文献   

17.
Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics. Most studies have employed either simple synthetic populations with restricted allelic variation or performed association mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb. We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in other organisms.  相似文献   

18.

Key message

Genetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects.

Abstract

The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high β-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment. Genotype by environment interactions was significant for most carotenoid traits. Using phenotypic data in additive, environment-specific genetic models, quantitative trait loci (QTL) were identified for absolute and derived carotenoid traits in each population, including those specific to the isomerization of β-carotene. A multivariate approach for these correlated traits was taken, using carotenoid trait principal components (PCs) that jointly accounted for 97 % or more of trait variation. Component loadings for carotenoid PCs were interpreted in the context of known substrate-product relationships within the carotenoid pathway. Importantly, QTL for univariate and multivariate traits were found to cluster in close proximity to map locations of loci involved in methyl-erythritol, isoprenoid and carotenoid metabolism. Several of these genes, including lycopene epsilon cyclase, carotenoid cleavage dioxygenase1 and beta-carotene hydroxylase, were mapped in the segregating populations. These loci exhibited pleiotropic effects on α-branch carotenoids, total carotenoid profile and β-branch carotenoids, respectively. Our results confirm that several QTL are involved in the modification of carotenoid profiles, and suggest genetic targets that could be used for the improvement of total carotenoid and β-carotene in future breeding populations.  相似文献   

19.
The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT) gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD) estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide range of environments.  相似文献   

20.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号