首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Lianas are a central component of tropical forests. However, how the type of climbing mechanisms is related to the functional and taxonomic diversity of lianas across the tropics, remains largely unresolved. Here, we tested two main hypotheses: (i) the functional diversity of lianas differs with climbing mechanism (active and passive) and (ii) the association between taxonomic diversity with contemporary climate, paleoclimate, forest structure and phylogeny differ between climbing mechanisms.  相似文献   

2.
Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long‐term changes in species abundance and body‐size distributions. In this study, we investigated long‐term (1911–2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger‐growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller‐growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size‐dependent responses of species to long‐term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size‐selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna.  相似文献   

3.
Blanchet S  Dubut V 《Molecular ecology》2012,21(10):2311-2314
A strategy for species to survive climate change will be to change adaptively their way of life. Understanding rapid adaptation to climate change is therefore a priority for current research. In this issue, Turrero et al. (2012) use an original approach to unravel life history trait responses to climate change in two fish species (Salmo trutta and S. salar). Going against the flow, the authors adopt the strategy of going back to the future by investigating the responses of fish to the warming periods that followed the Last Glacial Period (approximately 30-20,000 years BP). To do this, they analysed Salmo vertebrae from well-dated archaeological sites in northern Spain in order to uncover key life history traits, which they then compared to those of contemporary specimens. They found that, as the climate got warmer, Salmo species tended to reduce the time spent in growing areas and reached spawning areas at a younger age; this tendency began approximately 15,000 years BP and accelerated in contemporary periods. The implication is a lower age at maturity and a lower reproductive success, which they tentatively related to recent declines in population growth rate. This innovative study demonstrates how changes in life history traits are linked both to the population growth rate and to the evolutionary rate under climatic constraints, which may serve as a basis for future conservation research.  相似文献   

4.
5.
    
The ability of perennial species to adapt their phenology to present and future temperature conditions is important for their ability to retain high fitness compared to other competing plant species, pests, and pathogens. Many transplanting studies with forest tree species have previously reported substantial genetic differentiation among populations within their native range. However, the question of “how local is local” is still highly debated in conservation biology because studies on genetic patterns of variation within and among populations at the local scale are limited and scattered. In this study, we compare the level of genetic differentiation among populations of six different perennial plant species based on their variation in spring flushing. We assess the level of additive genetic variation present within the local population. For all six species, we find significant differentiation among populations from sites with mean annual temperature ranging between 7.4°C and 8.4°C. The observed variation can only be partly explained by the climate at the site of origin. Most clear relationship between early flushing and higher average spring temperature is observed for the three wind‐pollinated species in the study, while the relations are much less clear for the three insect‐pollinated species. This supports that pollination system can influence the balance between genetic drift and natural selection and thereby influence the level of local adaptation in long‐lived species. On the positive side, we find that the native populations of woody plant species have maintained high levels of additive genetic variation in spring phenology, although this also differs substantially among the six studied species.  相似文献   

6.
    
While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries’ fundamental roles in recruitment and population replenishment. Here, we used a 26‐year time series (1987–2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r‐selected life‐history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1°C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K‐selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing‐tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r‐selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r‐selected species.  相似文献   

7.
8.
When climatic conditions change and become outside the range experienced in the past, species may show life‐history innovations allowing them to adapt in new ways. We report such an innovation for pied flycatchers Ficedula hypoleuca. Decades of breeding biological studies on pied flycatchers have rarely reported multiple breeding in this long‐distance migrant. In two populations, we found 12 recent incidents of females with second broods, all produced by extremely early laying females in warm springs. As such early first broods are a recent phenomenon, because laying dates have gradually advanced over time, this innovation now allows individual females to enhance their reproductive success considerably. If laying dates continue advancing, potentially more females may become multiple breeders and selection for early (and multiple) breeding phenotypes increases, which may accelerate adaptation to climatic change.  相似文献   

9.
植物功能性状对全球气候变化的指示作用研究进展   总被引:1,自引:0,他引:1  
以大气CO2浓度升高、大气温度升高、干旱胁迫加剧及紫外辐射增强为特征的全球变化对陆地生态系统产生巨大影响,植物作为陆地生态系统的重要组成部分,其功能性状对全球变化的指示作用为探寻全球变化规律、减缓气候变化提供了科学依据。该文主要综述了植物生理功能性状改变(形态变化、气孔调节、光合结构及光合途径改变和植物光合、呼吸速率及水分生理变化等)和物候功能性状改变对全球变化的指示作用,以及植物群落物种丰富度或数量增加等群落特征变化对全球气候变暖的指示作用。最后指出,完善植物功能性状指标和建立从植物个体、群落到生态系统功能的网络指示系统是今后植物功能性状指示研究的发展方向。  相似文献   

10.
    
Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as “adaptive” or not. Across many groups of plants, trait–climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an “economics spectrum” along which combinations of functional traits covary along a fast–slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic‐niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic‐niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait–climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.  相似文献   

11.
    
The success in competitions may be stressful for animals and costly in terms of immune functions and longevity. Focusing on Aosta Chestnut and Aosta Black Pied cattle, selected for their fighting ability in traditional competitions, this study investigated the genetic relationships of fighting ability with udder health traits (somatic cell score and two threshold traits for somatic cells), longevity (length of productive life and number of calvings) and test-day milk, fat and protein yield. Herdbook information and phenotypic records that have been routinely collected for breeding programs in 16 years were used for the abovementioned traits. Data belonged to 9328 cows and 19 283 animals in pedigree. Single-trait animal model analyses were run using a Gibbs sampling algorithm to estimate the variance components of traits, and bivariate analyses were then performed to estimate the genetic correlations. Moderate positive genetic correlations (ra) were found for fighting ability with somatic cell score (ra=0.255), suggesting that greater fighting ability is genetically related to a detriment in udder health, in agreement with the theory. The high positive genetic correlation between fighting ability and longevity (average ra=0.669) suggests that the economic importance of fighting ability (the winning cows get an higher price at selling) had probably masked the true genetic covariances. The genetic correlation between milk yield traits and fighting ability showed large intervals, but the negative values (average ra=−0.121) agreed with previous research. This study is one of the few empirical studies on genetic correlations for the competitive success v. immune functions and longevity traits. The knowledge of the genetic correlations among productive and functional traits of interest, including fighting ability, is important in animal breeding for a sustainable genetic improvement.  相似文献   

12.
伴随着降水特征变化(如干旱、干季延长或干湿交替加剧), 与之相耦合的植物功能性状也将随之发生变异, 继而引发植物功能性状的协作关系(单个器官内或多个器官间)发生相应调整, 以此为基础的植物行为和适应策略随之改变。但对这一过程背后的数量关系和作用机制仍然不清楚。以功能性状为切入点, 沿降水梯度带跨区域原位测量共有种对气候环境的特异性反应, 量化这些特异性反应背后的性状-环境关系, 阐明其调控机制, 揭示共有种功能性状及其适应策略的区域分异规律, 将为气候治理提供数据支撑和坚实的科学基础。该研究在中国东南至西北的降水梯度带上选取10个样地, 以样带共有种榆树(Ulmus pumila)为实验对象, 测量其枝和叶共28个功能性状。分析了榆树枝和叶性状以及性状间权衡关系的区域分异规律, 进一步量化不同器官(枝和叶)间功能性状协作关系沿降水梯度带的区域分异, 揭示了榆树对不同水分环境的适应策略。结果表明: (1)在湿润区, 榆树枝条具有最大的输水效率(Ks)和最小的栓塞抗性(P50); 随降水量减少, 叶片厚度、叶组织紧密度增加, 榆树的抗旱能力增强。(2)在整个降水梯度带上, 榆树同一器官(枝)内及不同器官(枝和叶)间均存在效率-安全权衡; 但在区域尺度上, 这种权衡关系随降水量的减少而解耦。(3)枝和叶功能性状相关分析表明: 在整个降水梯度带上, 最大净光合速率(Pn)和比叶质量(LMA)均与Ks负相关, 与P50正相关。榆树通过枝水分运输能力和叶功能性状(叶片厚度和气孔打开比率)协同调控光合能力, 枝和叶功能性状的调整与协作是榆树适应不同水分环境的重要机制。  相似文献   

13.
  总被引:1,自引:0,他引:1  
Millipedes (Diplopoda) and woodlice (Crustacea, Isopoda), with a total of about 15000 described species worldwide, contribute substantially to invertebrate biodiversity. These saprophagous macroarthropods, which are key regulators of plant litter decomposition, play an important role in the functioning of terrestrial ecosystems in tropical and temperate areas. Herein we review current knowledge on the effects of climate, food quality and land cover on millipede and woodlouse species to explore their potential responses to global change. Essentially similar trends are observed in the two taxa. Experiments have shown that climate warming could result in higher rates of population growth and have positive effects on the abundance of some temperate species. This is consistent with signs of northward expansion in Europe, although the mechanisms of dispersal remain unclear. The generality of this finding is evaluated in relation to the life histories and geographical distributions of species. At low latitudes, interactions with more severe droughts are likely and could affect community composition. Elevated atmospheric CO2 levels and changes in plant community composition are expected to alter leaf litter quality, a major determinant of macroarthropod fertility via the link with female adult body size. Although food quality changes have been shown to influence population growth rates significantly, it is proposed that the effects of warming will be probably more important during the coming decades. Land cover changes, mainly due to deforestation in the tropics and land abandonment in Europe, are critical to habitat specialists and could override any other effect of global change. Habitat destruction by man may be the main threat to macroarthropod species, many of which are narrow endemics. At the landscape scale, habitat heterogeneity could be a good option for conservation, even at the cost of some fragmentation. Two principal areas are identified which require further work: (i) the effects of climate change across broader geographic ranges, and on species with different ecologies and life histories; (ii) the effects of global change on both macroarthropods and their natural enemies (predators, parasites and pathogens), to improve predictions in field situations.  相似文献   

14.
    
Global climate change models forecast an increasing frequency and duration of extreme flood events, including during the growing season. In this mesocosm experiment, the survival, growth, and flowering of two hydric and two mesic wetland plant species were monitored under two extreme flood regimes, namely, repeated 2‐ and 7‐day floods, and compared with unflooded conditions. Plant survival was not significantly affected by flooding, but species showed different growth and flowering responses to the flood regimes. The hydric species Cardamine pratensis showed contrasting responses to floods with significantly more flowering stems and longer leaves in the 2‐day regime but delayed and poorer flowering in the 7‐day regime. Juncus articulatus, the other hydric species, responded most actively to 7‐day flooding, with significantly longer leaves, taller and more abundant flowering stems, and more flowers than in unflooded conditions. The mesic species Ranunculus acris showed variable growth and phenological responses to flooding, whereas Scorzoneroides autumnalis was most affected by the 7‐day flood regime, producing significantly shorter leaves and flowering stems and fewer flowers earlier in the season, compared with unflooded conditions. Overall, repeated 7‐day floods had a greater impact on plant performance than 2‐day flood events. All four species showed resilience to extreme flooding, irrespective of whether they were classed as hydric or mesic, but there was differential tolerance between species. This suggests that wetlands should be able to sustain vegetation under flooding extremes induced by climate change but community composition, biodiversity, and wetland services will all be affected.  相似文献   

15.
    
Comparative studies of sympatric species that integrate both phylogeographical and population genetic approaches provide insight into how demographic events and life history traits shape adaptive potential and drive species persistence. Such studies are rare for species‐rich and strongly structured environments, especially those of the southern hemisphere. For two sympatric, perennial shrubs of the south‐west Western Australian semi‐arid zone, Grevillea globosa and Mirbelia sp. Bursarioides, we assessed historical and contemporary genetic diversity and structure, demographic processes and ratios of pollen to seed dispersal. Phylogeographical structure was not detected and haplotype networks were star‐like. Number of haplotypes, nucleotide diversity, haplotype diversity, and allelic diversity were statistically significantly lower for G. globosa than for M. sp. Bursarioides. Levels of haplotype divergence and more contemporary genetic divergence and expected heterozygosity were lower for G. globosa than for M. sp. Bursarioides, but differences were not statistically significant. Both species exhibited signals of isolation by distance and low pollen to seed dispersal ratios (5.26:1 and 6.88:1). Grevillea globosa displayed signals of historical and contemporary demographic expansion. Results imply an important role for aspects of seed ecology that impact population demography, as well as direct dispersal and a significant contribution of seed dispersal to genetic connectivity in a semi‐arid landscape.  相似文献   

16.
    
Insects play a crucial role in all ecosystems, and are increasingly exposed to higher in temperature extremes under climate change, which can have substantial effects on their abundances. However, the effects of temperature on changes in abundances or population fitness are filtered through differential responses of life-history components, such as survival, reproduction, and development, to their environment. Such differential responses, or trade-offs, have been widely studied in birds and mammals, but comparative studies on insects are largely lacking, limiting our understanding of key mechanisms that may buffer or exacerbate climate-change effects across insect species. Here, we performed a systematic literature review of the ecological studies of lacewings (Neuroptera), predatory insects that play a crucial role in ecosystem pest regulation, to investigate the impact of temperature on life cycle dynamics across species. We found quantitative information, linking stage-specific survival, development, and reproduction to temperature variation, for 62 species from 39 locations. We then performed a metanalysis calculating sensitives to temperature across life-history processes for all publications. We found that developmental times consistently decreased with temperature for all species. Survival and reproduction however showed a weaker response to temperature, and temperature sensitivities varied substantially among species. After controlling for the effect of temperature on life-history processes, the latter covaried consistently across two main axes of variation related to instar and pupae development, suggesting the presence of life-history trade-offs. Our work provides new information that can help generalize life-history responses of insects to temperature, which can then expand comparative demographic and climate-change research. We also discuss important remaining knowledge gaps, such as a better assessment of adult survival and diapause.  相似文献   

17.
18.
    
Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate‐driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among‐population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space‐temperature and time‐temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature‐mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.  相似文献   

19.
    
As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate‐related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data‐sufficient terrestrial non‐volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south‐western Kenya, north‐eastern Tanzania, north‐eastern South Africa, Yunnan province in China, and mountain chains in Papua‐New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity.  相似文献   

20.
Although some organisms have moved to higher elevations and latitudes in response to recent climate change, there is little consensus regarding the capacity of different species to track rapid climate change via range shifts. Understanding species' abilities to shift ranges has important implications for assessing extinction risk and predicting future community structure. At an expanding front, colonization rates are determined jointly by rates of reproduction and dispersal. In addition, establishment of viable populations requires that individuals find suitable resources in novel habitats. Thus, species with greater dispersal ability, reproductive rate and ecological generalization should be more likely to expand into new regions under climate change. Here, we assess current evidence for the relationship between leading-edge range shifts and species' traits. We found expected relationships for several datasets, including diet breadth in North American Passeriformes and egg-laying habitat in British Odonata. However, models generally had low explanatory power. Thus, even statistically and biologically meaningful relationships are unlikely to be of predictive utility for conservation and management. Trait-based range shift forecasts face several challenges, including quantifying relevant natural history variation across large numbers of species and coupling these data with extrinsic factors such as habitat fragmentation and availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号