首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orlowski S  Nowak W 《Bio Systems》2008,94(3):263-266
The physiological role of recently discovered human neuroglobin (Ngb) is still unknown. Sound hypothesis says that it protects brain during hypoxia. In this paper the advanced potential of mean force by implicit ligand sampling (PMF/ILS) method is used to study the free energy landscape of Ngb for O(2), NO and CO ligands. The multiple diffusion paths are discovered and four ligand binding cavities are determined. The data show that certain regions are easily accessible by O(2) and NO but are protected from CO. Free energy landscapes provide realistic data for stochastic models of ligand diffusion in proteins.  相似文献   

2.
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the brain of vertebrates. Ferrous Ngb binds dioxygen with high affinity and the O2 adduct is able to scavenge NO. Convincing in vitro and in vivo data indicate that Ngb is involved in neuroprotection during hypoxia and ischemia. The 3D structure of Ngb reveals the presence of a wide internal cavity connecting its heme active site with the bulk. To explore the role of this “tunnel” in the control of ligand binding, we determined the structure of metNgb and NgbCO equilibrated with Xe or Kr. We show four docking sites for Xe (only two for Kr); two of the four Xe sites are within the large cavity. They are only partially conserved in globins, since the two proximal Xe sites identified in myoglobin (Xe1 and Xe2) are absent in Ngb, as well as in cytoglobin. The Xe docking sites in Ngb map a pathway within the protein matrix, leading to the heme, which becomes more accessible in the ligand-bound species. This may be of significance in connection with the redox chemistry that may be the primary function of this hexacoordinate globin.  相似文献   

3.
Brunori M  Gibson QH 《EMBO reports》2001,2(8):674-679
Small globular proteins contain internal cavities and packing defects that reduce thermodynamic stability but seem to play a role in controlling function by defining pathways for the diffusion of the ligand/substrate to the active site. In the case of myoglobin (Mb), a prototype for structure–function relationship studies, the photosensitivity of the adduct of the reduced protein with CO, O2 and NO allows events related to the migration of the ligand through the matrix to be followed. The crystal structures of intermediate states of wild-type (wt) and mutant Mbs show the photolysed CO to be located either in the distal heme pocket (primary docking site) or in one of two alternative cavities (secondary docking sites) corresponding to packing defects accessible to an atom of xenon. These results convey the general picture that pre-existing internal cavities are involved in controlling the dynamics and reactivity of the reactions of Mb with O2 and other ligands, including NO.  相似文献   

4.
Neuroglobin (Ngb) and cytoglobin (Cygb) are two recently discovered intracellular members of the vertebrate hemoglobin (Hb) family. Ngb, predominantly expressed in nerve cells, is of ancient evolutionary origin and is homologous to nerve-globins of invertebrates. Cygb, present in many different tissues, shares common ancestry with myoglobin (Mb) and can be traced to early vertebrate evolution. Ngb is held to facilitate O2 diffusion to the mitochondria and to protect neuronal cells from hypoxic-ischemic insults, may be an oxidative stress-responsive sensor protein for signal transduction, and may carry out enzymatic activities, such as NO/O2 scavenging. Cygb is linked to collagen synthesis, may provide O2 for enzymatic reactions, and may be involved in a ROS(NO)-signaling pathway(s). Ngb and Cgb display the classical three-over-three alpha-helical fold of Hb and Mb, and are endowed with a hexa-coordinate heme-Fe atom, in their ferrous and ferric forms, having the heme distal HisE7 residue as the endogenous ligand. Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of Ngb and Cygb. Moreover, Ngb and Cygb display a tunnel/cavity system within the protein matrix held to facilitate ligand channeling to/from the heme, multiple ligand copies storage, multi-ligand reactions, and conformational transitions supporting ligand binding.  相似文献   

5.
Xu J  Yin G  Du W 《Proteins》2011,79(1):191-202
Neuroglobin (Ngb), a hexa‐coordinated hemoprotein primarily expressed in the brain and retina, is thought to be involved in neuroprotection and signal transduction. Ngb can reversibly bind small ligands such as O2 and CO to the heme iron by replacing the distal histidine which is bound to the iron as the endogenous ligand. In this work, molecular dynamics (MD) simulations were performed to investigate the functionally related structural properties and dynamical characteristics in carboxy mouse neuroglobin and three distal mutants including single mutants H64V, K67T and double mutant H64V/K67T. MD simulations suggest that the heme sliding motion induced by the binding of exogenous ligand is affected by the distal mutation obviously. Accompanying changes in loop flexibility and internal cavities imply the structural rearrangement of Ngb. Moreover, the solvent accessibility of heme and some crucial residues are influenced revealing an interactive network on the distal side. The work elucidates that the key residues K67 at E10 and H64 at E7 are significant in modulating the heme sliding and hence the structural and physiological function of Ngb. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Neuroglobin (Ngb) is a member of the globin family expressed in the vertebrate brain, involved in neuroprotection. A combined approach of X-ray diffraction (XRD) on single crystal and X-ray absorption spectroscopy (XAS) in solution, allows to determine the oxidation state and the structure of the Fe-heme both in the bis-histidine and the CO-bound (NgbCO) states. The overall data demonstrate that under X-ray the iron is photoreduced fairly rapidly, and that the previously reported X-ray structure of ferric Ngb [B. Vallone, K. Nienhaus, M. Brunori, G.U. Nienhaus, Proteins 56 (2004) 85-92] very likely refers to a photoreduced species indistinguishable from the dithionite reduced protein. Results from the XAS analysis of NgbCO in solution are in good agreement with XRD data on the crystal. However prolonged X-ray exposure at 15 K determines CO release. This preliminary result paves the way to experiments aimed at the characterization of pentacoordinate ferrous Ngb, the only species competent in binding external ligands such as O2, CO or NO.  相似文献   

7.
Small reversible changes in the absorption spectra of HCN, CO, NO and O2 complexes of ferrous diacetyldeuteroperoxidase A, not hitherto observed, were attributed to proton dissociation of a distal amino acid residue. From spectrophotometric titration data the pKa was measured as 5.5 (HCN), 5.6 (ligand free), 6.0 (CO), 6.55 (NO) and 8.0 (O2). The value of 8.0 for the pKa of the O2 complex was also obtained from a curve of pH dependence of proton uptake in the reaction of the ferrous enzyme with O2. Absorption bands in the visible region were shifted to longer wavelengths in the order of CO to NO to O2 which is the decreasing order of the energy of π1 level of these diatomic ligands.The pKa values for CO complexes of ferroperoxidases, isoenzymes A and (B+C) were varied with substituents at the 2 and 4 positions of deuterohemin IX, and the ΔpKaΔpK3 ratio was about 0.3 in both series of isoenzyme preparations, where pK3 is a measure of basicity of pyrrole nitrogen.The present data support the previous conclusion (Yamada and Yamazaki (1974) Arch. Biochem. Biophys., 165, 728) that the pKa for ferroperoxidases, measured from small reversible changes in the absorption spectra, represents a proton dissociation constant of a distal amino acid residue and that there is hydrogen bonding between the residue and a ligand atom directly bound to the iron atom.  相似文献   

8.
The superfamily of heme?copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme?copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108–109?M?1?s?1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5?×?108?M?1?s?1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.  相似文献   

9.
The reactions of molecular oxygen (O2) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba3 and bovine heart aa3 were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O2 and NO complexes. The binding of O2/NO to reduced ba3 in the absence of CO occurs with a second-order rate constant of 1 × 109 M? 1 s? 1. This rate is 10-times faster than for the mammalian enzyme, and which is attributed to structural differences in the ligand channels of the two enzymes. Moreover, the O2/NO binding in ba3 is 10-times slower in the presence of the photodissociated CO while the rates are the same for the bovine enzyme. This indicates that the photodissociated CO directly or indirectly impedes O2 and NO access to the active site in Tt ba3, and that traditional CO flow-flash experiments do not accurately reflect the O2 and NO binding kinetics in ba3. We suggest that in ba3 the binding of O2 (NO) to heme a32 + causes rapid dissociation of CO from CuB+ through steric or electronic effects or, alternatively, that the photodissociated CO does not bind to CuB+. These findings indicate that structural differences between Tt ba3 and the bovine aa3 enzyme are tightly linked to mechanistic differences in the functions of these enzymes. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

10.
The Nostoc sp (Ns) H‐NOX (heme‐nitric oxide or OXygen‐binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y‐shaped tunnel system hosted in the Ns H‐NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881–889] recently using x‐ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H‐NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H‐NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H‐NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. Proteins 2013; 81:1363–1376. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.  相似文献   

12.
Cytoglobin (Cgb), the fourth member of the vertebrate heme globin family, is widely expressed in mammalian tissues, and reversibly binds to CO, O2 and other small ligands. The diverse functions of Cgb may include ligand transport, redox reactions and enzymatic catalysis. Recent studies indicate that Cgb is a potential gene medicine for fibrosis and cancer therapy. In the present work, molecular dynamics (MD) simulations were performed to investigate the functionally related structural properties and dynamic characteristics in carboxy and deoxy human Cgb. The simulation results showed that the loop regions and internal cavities were significantly affected through the binding of an exogenous ligand. The AB, GH and EF loops were found to undergo significant rearrangement and this led to distinct cavity adjustments in Xe2, Xe4 and the distal pocket. In addition, solvent accessibility and torsion angle analyses revealed an interactive distal network comprised of His81(E7), Leu46(B10) and Arg84(E10). The MD study of carboxy and deoxy human Cgb revealed that CO-ligated Cgb modulates the protein conformation primarily by loop and cavity rearrangements rather than the heme sliding mechanism found in neuroglobin (Ngb). The significant differences between Cgb and Ngb in the loop and cavity properties are presumably linked to their various biological functions.  相似文献   

13.
Cytoglobin (Cgb) and neuroglobin (Ngb) are the first examples of hexacoordinated globins from humans and other vertebrates in which a histidine (His) residue at the sixth position of the heme iron is an endogenous ligand in both the ferric and ferrous forms. Static and time-resolved resonance Raman and FT-IR spectroscopic techniques were applied in examining the structures in the heme environment of these globins. Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy of transient five-coordinate heme species produced by the photolysis of carbon monoxide (CO) adducts of Cgb and Ngb showed Fe-His stretching (nu(Fe-His)) bands at 229 and 221 cm(-1), respectively. No time-dependent shift in the nu(Fe-His) band of Cgb and Ngb was detected in the 20-1000 ps time domain, in contrast to the case of myoglobin (Mb). These spectroscopic data, combined with previously reported crystallographic data, suggest that the structure of the heme pocket in Cgb and Ngb is altered upon CO binding in a manner different from that of Mb and that the scales of the structural alteration are different for Cgb and Ngb. The structural property of the heme distal side of the ligand-bound forms was investigated by observing the sets of (nu(Fe-CO), nu(C-O), delta(Fe-C-O)) and (nu(Fe-NO), nu(N-O), delta(Fe-N-O)) for the CO and nitric oxide (NO) complexes of Cgb and Ngb. A comparison of the spectra of some distal mutants of Cgb (H81A, H81V, R84A, R84K, and R84T) and Ngb (H64A, H64V, K67A, K67R, and K67T) showed that the CO adducts of Cgb and Ngb contained three conformers and that the distal His (His81 in Cgb and His64 in Ngb) mainly contributes to the interconversion of the conformers. These structural characteristics of Cgb and Ngb are discussed in relation to their ligand binding and physiological properties.  相似文献   

14.
A wide and still rapidly increasing range of heme-based sensor proteins has been discovered over the last two decades. At the molecular level, these proteins function as bistable switches in which the catalytic activity of an enzymatic domain is altered mostly by binding or dissociation of small gaseous ligands (O2, NO or CO) to the heme in a sensor domain. The initial “signal” at the heme level is subsequently transmitted within the protein to the catalytic site, ultimately leading to adapted expression levels of specific proteins. Making use of the photolability of the heme-ligand bond that mimics thermal dissociation, early processes in this intra-protein signaling pathway can be followed using ultrafast optical spectroscopic techniques; they also occur on timescales accessible to molecular dynamics simulations. Experimental studies performed over the last decade on proteins including the sensors FixL (O2), CooA (CO) and soluble guanylate cyclase (NO) are reviewed with an emphasis on emerging general mechanisms. After heme-ligand bond breaking, the ligand can escape from the heme pocket and eventually from the protein, or rebind directly to the heme. Remarkably, in all sensor proteins the rebinding, specifically of the sensed ligand, is highly efficient. This ”ligand trap” property possibly provides means to smoothen the effects of fast environmental fluctuations on the switching frequency. For 6-coordinate proteins, where exchange between an internal heme-bound residue and external gaseous ligands occurs, the study of early processes starting from the unliganded form indicates that mobility of the internal ligand may facilitate signal transfer. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

15.
Neuroglobin (Ngb), a neuron-specific heme-binding protein that binds O2, CO and NO reversibly, and promotes in vivo and in vitro cell survival after hypoxic and ischaemic insult. Although the mechanisms of this neuroprotection remain unknown, Ngb might play an important role in counteracting the adverse effects of ischaemic stroke and cerebral hypoxia. Several Ngb overexpressing mouse models have confirmed this hypothesis; however, these models were not yet exposed to in-depth behavioural characterisations. To investigate the potential changes in behaviour due to Ngb overexpression, heterozygous mice and wild type (WT) littermates were subjected to a series of cognitive and behavioural tests (i.e., the SHIRPA primary screening, the hidden-platform Morris water maze, passive avoidance learning, 47 h cage activity, open field exploration, a dark–light transition box, an accelerating rotarod, a stationary beam, a wire suspension task and a gait test) under normoxic and hypoxic conditions. No significant behavioural differences were found between WT and Ngb-overexpressing mice at three months old. However, one-year-old Ngb-overexpressing mice travelled more distance on the stationary beam compared with WT littermates. This result shows that the constitutive overexpression of Ngb might counteract the endogenous decrease of Ngb in crucial brain regions such as the cerebellum, thereby counteracting age-induced neuromotor dysfunction. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

16.
Heme–copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme–copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme–copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme–copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme–copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein–lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein–membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.  相似文献   

17.
Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD–HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII–O2 ·? species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the MIII–O2 ·? species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD–4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD–ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of FeII and MnII. Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover. Accordingly, past studies have shown that intermediate FeIII species are observed for these mutant enzymes.  相似文献   

18.
Globins are respiratory proteins that reversibly bind dioxygen and other small ligands at the iron of a heme prosthetic group. Hemoglobin and myoglobin are the most prominent members of this protein family. Unexpectedly a few years ago a new member was discovered and called neuroglobin (Ngb), being predominantly expressed in the brain. Ngb is a single polypeptide of 151 amino acids and despite the small sequence similarity with other globins, it displays the typical globin fold. Oxygen, nitric oxide, or carbon monoxide can displace the distal histidine which, in ferrous Ngb as well as in ferric Ngb, is bound to the iron, yielding a reversible adduct. Recent crystallographic data on carboxy Ngb show that binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities; in particular, the huge internal tunnel that connects the bulk with the active site, peculiar to Ngb, is heavily reorganized. We report the results of extended (90 ns) molecular dynamics simulations in water of ferrous deoxy and carboxy murine neuroglobin, which are both coordinated on the distal site, in the latter case by CO and in the former one by the distal His(64)(E7). The long timescale of the simulations allowed us to characterize the equilibrated protein dynamics and to compare protein structure and dynamical behavior coupled to the binding of an exogenous ligand. We have characterized the heme sliding motion, the topological reorganization of the internal cavities, the dynamics of the distal histidine, and particularly the conformational change of the CD loop, whose flexibility depends ligand binding.  相似文献   

19.
The kinetics of the reaction of myoglobin (Mb) with CO and O2 have been studied as a function of temperature by flash photolysis in mixtures of glycerol and water of high viscosities. This was done in order to examine the importance of diffusion-controlled kinetics on protein-ligand reactions. The apparent activation enthalpies of the binding reaction show changes with temperature consistent with a change from chemical activation control of the reaction at higher temperatures to diffusion control at the lower temperatures and higher viscosities. The activation enthalpies for ligand binding in the diffusion-controlled temperature region are similar in value to the viscosity activation energies of the particular solvent mixture as might be expected for a diffusion-controlled reaction. Curve fitting of the rate-temperature data yields factors by which the diffusion-controlled reaction departs from that predicted for reaction between spherically symmetric, uniformly reactive molecules of equal radii. This factor is between 0.1 and 6, depending both upon the solvent mixture and the ligand. Various models for diffusion-controlled reaction with steric requirements are examined in order to rationalize these results. The existence of a linear correlation between ΔH3 and ΔS3 for the chemica activation-controlled portions of reaction yield isokinetic temperatures of 305 and 288 °K for the CO and O2 reactions, respectively.  相似文献   

20.
Myoglobin (Mb) is reported in biochemistry and physiology textbooks to act as an O2 reservoir and to facilitate O2 diffusion from capillaries to mitochondria, to sustain cellular respiration. Recently, it has been proposed that Mb is an intracellular scavenger of bioactive nitric oxide (NO), regulating its level in the skeletal and cardiac muscle and thereby protecting mitochondrial respiration, which is impaired by NO. This novel function of Mb is based on the rapid and irreversible reaction of ferrous oxygenated Mb (MbO2) with NO yielding ferric oxidized Mb (metMb) and nitrate (NO3). The efficiency of this process, which is postulated to depend on the superoxide (O2) character acquired by O2 once bound to the heme iron, may be enhanced by intramolecular diffusion of NO trapped momentarily into cavities of the protein matrix. O2 can also react with ferrous nitrosylated Mb (MbNO), albeit very slowly, leading to metMb and NO3. The O2-dependent NO-detoxification process may be considered to be pseudo-enzymatic given that metMb obtained by the primary reaction of MbO2 with NO is reduced back to ferrous Mb by a specific metMb-reductase, and can therefore repeat a cycle of NO conversion to harmless nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号