首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.  相似文献   

2.
Learning and memory deficits occur in depression and other stress related disorders. Although the pathogenesis of cognitive impairment after stress has not been fully elucidated, factors such as oxidative stress and neurotrophins are thought to play possible roles. Here we investigated the effect of treatment with vitamin E (40 mg/kg) and vitamin C (100 mg/kg) on the effects elicited by chronic variable stress on rat performance in Morris water maze. Brain-derived neurotrophic factor (BDNF) immunocontent was also evaluated in hippocampus of rats. Sixty-day old Wistar rats were submitted to different stressors for 40 days (stressed group). Half of stressed group received administration of vitamins once a day, during the period of stress. Chronically stressed rats presented a marked decrease in reference memory in the water maze task as well as a reduced efficiency to find the platform in the working memory task. Rats treated with vitamins E and C had part of the above effects prevented, suggesting the participation of oxidative stress in such effects. The BDNF levels were not altered in hippocampus of stressed group when compared to controls. Our findings lend support to a novel therapeutic strategy, associated with these vitamins, to the cognitive dysfunction observed in depression and other stress related diseases.  相似文献   

3.
Mitochondrial Dysfunction and Psychiatric Disorders   总被引:1,自引:0,他引:1  
Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which supplies more than 95% of the total energy requirement in the cells. Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of psychiatric disorders. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, being therefore more susceptible to reduction of the aerobic metabolism. Mitochondrial dysfunction results from alterations in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as bipolar disorder, depression and schizophrenia. Bipolar disorder is a prevalent psychiatric disorder characterized by alternating episodes of mania and depression. Recent studies have demonstrated that important enzymes involved in brain energy are altered in bipolar disorder patients and after amphetamine administration, an animal model of mania. Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Several works have demonstrated that metabolism is impaired in some animal models of depression, induced by chronic stress, especially the activities of the complexes of mitochondrial respiratory chain. Schizophrenia is a devastating mental disorder characterized by disturbed thoughts and perception, alongside cognitive and emotional decline associated with a severe reduction in occupational and social functioning, and in coping abilities. Alterations of mitochondrial oxidative phosphorylation in schizophrenia have been reported in several brain regions and also in platelets. Abnormal mitochondrial morphology, size and density have all been reported in the brains of schizophrenic individuals. Considering that several studies link energy impairment to neuronal death, neurodegeneration and disease, this review article discusses energy impairment as a mechanism underlying the pathophysiology of some psychiatric disorders, like bipolar disorder, depression and schizophrenia.  相似文献   

4.
Major depression is characterized for symptoms at the psychological, behavioral and physiological levels. The chronic mild stress model has been used as an animal model of depression. The consumption of sweet food, locomotor activity, body weight, lipid and protein oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, prefrontal cortex and cortex were assessed in rats exposed to chronic mild stress. Our findings demonstrated a decrease on sweet food intake, no effect on locomotor activity, lack of body weight gain, increase in protein (prefrontal, hippocampus, striatum and cortex) and lipidic peroxidation (cerebellum and striatum), and an increase in catalase (cerebellum, hippocampus, striatum, cortex) and a decrease in superoxide dismutase activity (prefrontal, hippocampus, striatum and cortex) in stressed rats. In conclusion, our results support the idea that stress produces oxidants and an imbalance between superoxide dismutase and catalase activities that contributes to stress-related diseases, such as depression.  相似文献   

5.
Mitochondrial chronic stress that originates from defective mitochondria is implicated in a growing list of human diseases. To enhance understanding of pathophysiology of chronic mitochondrial dysfunction we investigated human osteosarcoma cells with 2 types of chronic stress: corresponding to the mutation in ATP synthase subunit 6 encoded by mtDNA (NARP syndrome-mild stress) and to a total lack of mtDNA (Rho0 cells-heavy stress). We previously found that selenium influenced mitochondrial stress response and lowered ROS production. Therefore, in this study effect of selenite on other mitochondrial parameters was investigated. We showed that presence of selenium improved survival of starved cells, modified organization of mitochondrial network in NARP cybrids and decreased cytosolic calcium level in NARP and Rho0 cells. Selenium did not affect mitochondrial membrane potential, ATP level, activity of ATP synthase and activity of complex II of the respiratory chain.  相似文献   

6.

Chronic restraint stress (CRS) induces a variety of changes in brain function, some of which are mediated by glucocorticoids. The response to stress occurs in a sex-specific way, and may include mitochondrial and synaptic alterations. The synapse is highly dependent on mitochondrial energy supply, and when mitochondria become dysfunctional, they orchestrate cell death. This study aimed to investigate the CRS effects on mitochondrial respiratory chain activity, as well as mitochondrial potential and mass in cell body and synapses using hippocampus, cortex and striatum of male and female rats. Rats were divided into non-stressed (control) and stressed group (CRS during 40 days). Results showed that CRS increased complex I–III activity in hippocampus. We also observed an interaction between CRS and sex in the striatal complex II activity, since CRS induced a reduction in complex II activity in males, while in females this activity was increased. Also an interaction was observed between stress and sex in cortical complex IV activity, since CRS induced increased activity in females, while it was reduced in males. Glucocorticoid receptor (GR) content in cortex and hippocampus was sexually dimorphic, with female rats presenting higher levels compared to males. No changes were observed in GR content, mitochondrial potential or mass of animals submitted to CRS. It was concluded that CRS induced changes in respiratory chain complex activities, and some of these changes are sex-dependent: these activities are increased in the striatal mitochondria by CRS protocol mainly in females, while in males it is decreased.

  相似文献   

7.
Recent evidences include mitochondrial dysfunctions in pathophysiology of mood disorders. We examined association between depressive disorders and mitochondrial respiration using both intact and permeabilized blood platelets. In intact platelets, physiological respiration, maximal capacity of electron transport system and respiratory rate after complex I inhibition were decreased in depressive patients, who reached partial remission, compared to healthy controls. Respiratory rates were unchanged in several respiratory states in permeabilized platelets. Results indicate that changes in respiratory rate in intact platelets can be used as biological marker of depressive disorder. The hypothesis that decreased mitochondrial respiratory rate participate in pathophysiology of depression was supported.  相似文献   

8.
Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.  相似文献   

9.
The pathophysiology of major depressive disorder (MDD) and other stress related disorders has been associated with aberrations in the hippocampus and the frontal brain areas. More recently, other brain regions, such as the caudate nucleus, the putamen and the amygdala have also been suggested to play a role in the development of mood disorders. By exposing rats to a variety of stressors over a period of eight weeks, different phenotypes, i.e. stress susceptible (anhedonic-like) and stress resilient animals, can be discriminated based on the sucrose consumption test. The anhedonic-like animals are a well validated model for MDD. Previously, we reported that in vivo diffusion kurtosis imaging (DKI) of the hippocampus shows altered diffusion properties in chronically stressed rats independent of the hedonic state and that the shape of the right hippocampus is differing among the three groups, including unchallenged controls. In this study we evaluated diffusion properties in the prefrontal cortex, caudate putamen (CPu) and amygdala of anhedonic-like and resilient phenotypes and found that mean kurtosis in the CPu was significantly different between the anhedonic-like and resilient animals. In addition, axial diffusion and radial diffusion were increased in the stressed animal groups in the CPu and the amygdala, respectively. Furthermore, we found that the CPu/brain volume ratio was increased significantly in anhedonic-like animals as compared with control animals. Concurrently, our results indicate that the effects of chronic stress on the brain are not lateralized in these regions. These findings confirm the involvement of the CPu and the amygdala in stress related disorders and MDD. Additionally, we also show that DKI is a potentially important tool to promote the objective assessment of psychiatric disorders.  相似文献   

10.
We studied the extent of mitochondrial involvement in chronic fatigue syndrome (CFS) and investigated whether measurement of mitochondrial respiratory chain complex (RCC) activities discriminates between CFS and mitochondrial disorders. Mitochondrial content was decreased in CFS compared to healthy controls, whereas RCC activities corrected for mitochondrial content were not. Conversely, mitochondrial content did not discriminate between CFS and two groups of mitochondrial disorders, whereas ATP production rate and complex I, III and IV activity did, all with higher activities in CFS. We conclude that the ATP production rate and RCC activities can reliably discriminate between mitochondrial disorders and CFS.  相似文献   

11.
Liu XH  Qian LJ  Gong JB  Shen J  Zhang XM  Qian XH 《Proteomics》2004,4(10):3167-3176
Chronic restraint stress induces cardiac dysfunction as well as cardiomyocyte injury including severe ultrastructural alteration and cell death, but its mechanism and molecular basis remain unclear. Mitochondria play a key role in regulating cell life. For exploring mitochondrial proteins which correlate with stress-induced injury, two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) were applied. After comparing the protein profiles of myocardial mitochondria between a chronic restraint stress group and a control group, 11 protein spots were found altered, seven of which were identified by MALDI-TOF MS. Among the seven proteins, five proteins involved in the Krebs cycle and lipid metabolism in mitochondria decreased after chronic restraint stress. They were identified as carnitine palmitoyltransferase 2, mitochondrial acyl-CoA thioesterase 1, isocitrate dehydrogenase 3 (NAD+) alpha, fumarate hydratase 1 and pyruvate dehydrogenase beta. The last two proteins, creatine kinase and prohibitin, increased after chronic restraint stress. Biochemical tests for energy metabolism in mitochondria also supported the proteomic results. These findings provide clues for understanding the mechanism of dysfunction or injury in cardiomyocytes induced by chronic stress.  相似文献   

12.
Exposure to stress is known to precipitate or exacerbate many neuropsychiatric disorders such as depression. Abnormality of the neuroendocrine system, as shown by increased adrenal weight and attenuated glucocorticoid negative feedback, is frequently seen in depression. The aim of the present study is to clarify the usefulness of saiko-ka-ryukotsu-borei-to, an herbal medicine, in the treatment of abnormality of the neuroendocrine system using an experimental stress-depression model. Rats were subjected to water immersion and restraint for 2 h daily for 4 weeks (chronic stress), followed by recovery for 10 days. Saiko-ka-ryukotsu-borei-to was administered during the stress and recovery periods (100, 300, or 1000 mg/kg daily, p.o.) or only during the recovery period (1000 mg/kg). After the recovery period, the adrenal weight was measured, and glucocorticoid feedback ability was evaluated by a dexamethasone suppression test using 30 microg/kg dexamethasone. The administration of saiko-ka-ryukotsu-borei-to during the stress and recovery periods prevented the stress-induced increase in adrenal weight or the attenuated negative feedback in a dose-dependent manner. The administration of saiko-ka-ryukotsu-borei-to during the recovery period alone also ameliorated the abnormality of the neuroendocrine system. These results indicate that saiko-ka-ryukotsu-borei-to is effective against chronic stress-induced abnormality of the neuroendocrine system. Because some symptoms and symptomatic relapses in depressives are attributed to dysfunction of the hypothalamo-pituitary-adrenal axis, the present findings provide information important for prevention and treatment of depression.  相似文献   

13.
Mounting studies show that hippocampal synaptic transmission and plasticity are abnormal in depression. It has been suggested that impairment of synaptic mitochondrial functions potentially occurs in the hippocampus. Thus, the synaptic mitochondria may be a crucial therapeutic target in the course of depression. Here, we investigated the potential dysregulation of synaptic mitochondrial proteins in the hippocampus of a chronic mild stress (CMS) rat model. Proteomic changes of hippocampal synaptosomes containing synaptic mitochondria were quantitatively examined using the isobaric tag for relative and absolute quantitation labeling combined with tandem mass spectrometry. 45 Proteins were identified to be differentially expressed, of which 21 were found to be putative synaptic mitochondrial proteins based on gene ontology component and SynaptomeDB analyses. Detailed investigations of protein functions and disease relevance support the importance of hippocampal synaptic mitochondria as a key substrate contributing to impairment in synaptic plasticity of stress-related disorders. Interestingly, eight synaptic mitochondrial proteins were specifically associated to the susceptible group, and might represent part of molecular basis of depression. Further analysis indicated that the synaptic mitochondrial oxidative phosphorylation (OXPHOS) system was heavily affected by CMS in the susceptible rats. The present results provide novel insights into the disease mechanism underlying the abnormal OXPHOS that is responsible for energy-demanding synaptic plasticity, and thereby increase our understanding of the role of hippocampal synaptic mitochondrial dysfunction in depression.  相似文献   

14.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

15.
The effect on emotional reactivity produced by a model for chronic stress in which different types of acute stresses were randomly combined for 29 days was studied in adult male rats. Chronically stressed rats showed a slight decrease in body weight gain and an increase in relative adrenal weight. Chronic stress did not modify defecation rate but reduced exploratory activity in the holeboard. Neither basal nor acute-stress induced levels of adrenocorticotropin (ACTH) were modified by previous chronic stress. Likewise, basal corticosterone levels were similar in both groups. However, corticosterone response to acute restraint stress was higher in chronically stressed than in control rats. The mechanisms underlying the dissociation between ACTH and corticosterone as well as its possible implications are discussed.  相似文献   

16.
Complex I has reactive thiols on its surface that interact with the mitochondrial glutathione pool and are implicated in oxidative damage in many pathologies. However, the Cys residues and the thiol modifications involved are not known. Here we investigate complex I thiol modification within oxidatively stressed mammalian mitochondria, containing physiological levels of glutathione and glutaredoxin 2. In mitochondria incubated with the thiol oxidant diamide, complex I is only glutathionylated on the 75-kDa subunit. Of the 17 Cys residues on the 75-kDa subunit, 6 are not involved in iron-sulfur centers, making them plausible candidates for glutathionylation. Mass spectrometry of complex I from oxidatively stressed bovine heart mitochondria showed that only Cys-531 and Cys-704 were glutathionylated. The other four non-iron-sulfur center Cys residues remained as free thiols. Complex I glutathionylation also occurred in response to relatively mild oxidative stress caused by increased superoxide production from the respiratory chain. Although complex I glutathionylation within oxidatively stressed mitochondria correlated with loss of activity, it did not increase superoxide formation, and reversal of glutathionylation did not restore complex I activity. Comparison with the known structure of the 75-kDa ortholog Nqo3 from Thermus thermophilus complex I suggested that Cys-531 and Cys-704 are on the surface of mammalian complex I, exposed to the mitochondrial glutathione pool. These findings suggest that Cys-531 and Cys-704 may be important in preventing oxidative damage to complex I by reacting with free radicals and other damaging species, with subsequent glutathionylation recycling the thiyl radicals and sulfenic acids formed on the Cys residues back to free thiols.  相似文献   

17.
Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 +/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 +/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 +/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.  相似文献   

18.
In this study, we tested preventive effects of a natural medicine the extract of Ginkgo biloba (EGB 761) on post-stress cognitive dysfunction. Exposure to chronic restraint stress in rats and psychosocial stress in humans has been shown to alter cognitive functions such as learning and memory and have been linked to the pathophysiology of mood and anxiety disorders.Our findings indicate that chronic restraint stress impaired egocentric spatial memory as observed in the eight-arm radial maze but it did not alter the allocentric spatial memory in the Morris water maze. In control rats EGB 761 (100 mg/kg, orally) improved spatial memory in these two tests. Also, EGB 761 normalized cognitive deficits seen in rats chronically stressed or treated with an ‘equivalent’ dose of exogenous corticosterone (5 mg/kg, subcutaneously).We conclude that, in rats, repeated administration of EGB 761 prevents stress- and corticosterone-induced impairments of spatial memory.  相似文献   

19.
Mood disorders like major depression and bipolar disorder (BD) are among the most prevalent forms of mental illness. Current knowledge of the neurobiology and pathophysiology of these disorders is still modest and clear biological markers are still missing. Thus, a better understanding of the underlying pathophysiological mechanisms to identify potential therapeutic targets is a prerequisite for the design of new drugs as well as to develop biomarkers that help in a more accurate and earlier diagnosis.Multiple pieces of evidence including genetic and neuro-imaging studies suggest that mood disorders are associated with abnormalities in endoplasmic-reticulum (ER)-related stress responses, mitochondrial function and calcium signalling. Furthermore, deregulation of the innate immune response has been described in patients diagnosed with mood disorders, including depression and BD. These disease-related events are associated with functions localized to a subdomain of the ER, known as Mitochondria-Associated Membranes (MAMs), which are lipid rafts-like domains that connect mitochondria and ER, both physically and biochemically.This review will outline the current understanding of the role of mitochondria and ER dysfunction under pathological brain conditions, particularly in major depressive disorder (MDD) and BD, that support the hypothesis that MAMs can act in these mood disorders as the link connecting ER-related stress response and mitochondrial impairment, as well as a mechanisms behind sterile inflammation arising from deregulation of innate immune responses. The role of MAMs in the pathophysiology of these pathologies and its potential relevance as a potential therapeutic target will be discussed.  相似文献   

20.
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号