首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of the current study was to evaluate the effect of 12/15- lipoxygenase (12/15-LOX) metabolites on retinal endothelial cell (REC) barrier function. FITC-dextran flux across the REC monolayers and electrical cell-substrate impedance sensing (ECIS) were used to evaluate the effect of 12- and 15-hydroxyeicosatetreanoic acids (HETE) on REC permeability and transcellular electrical resistance (TER). Effect of 12- or 15-HETE on the levels of zonula occludens protein 1 (ZO-1), reactive oxygen species (ROS), NOX2, pVEGF-R2 and pSHP1 was examined in the presence or absence of inhibitors of NADPH oxidase. In vivo studies were performed using Ins2Akita mice treated with or without the 12/15-LOX inhibitor baicalein. Levels of HETE and inflammatory mediators were examined by LC/MS and Multiplex Immunoassay respectively. ROS generation and NOX2 expression were also measured in mice retinas. 12- and 15- HETE significantly increased permeability and reduced TER and ZO-1expression in REC. VEGF-R2 inhibitor reduced the permeability effect of 12-HETE. Treatment of REC with HETE also increased ROS generation and expression of NOX2 and pVEGF-R2 and decreased pSHP1 expression. Treatment of diabetic mice with baicalein significantly decreased retinal HETE, ICAM-1, VCAM-1, IL-6, ROS generation, and NOX2 expression. Baicalein also reduced pVEGF-R2 while restored pSHP1 levels in diabetic retina. Our findings suggest that 12/15-LOX contributes to vascular hyperpermeability during DR via NADPH oxidase dependent mechanism which involves suppression of protein tyrosine phosphatase and activation of VEGF-R2 signal pathway.  相似文献   

3.
4.
15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15-hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.  相似文献   

5.
Biosynthesis of 5,15-dihydroxyeicosatetraenoic acid (5,15-diHETE) in leukocytes involves consecutive oxygenation of arachidonic acid by 5-lipoxygenase (LOX) and 15-LOX in either order. Here, we analyzed the contribution of cyclooxygenase (COX)-2 to the biosynthesis of 5,15-diHETE and 5,11-diHETE in isolated human leukocytes activated with lipopolysaccharide and calcium ionophore A23187. Transformation of arachidonic acid was initiated by 5-LOX providing 5S-HETE as a substrate for COX-2 forming 5S,15S-diHETE, 5S,15R-diHETE, and 5S,11R-diHETE as shown by LC/MS and chiral phase HPLC analyses. The levels of 5,15-diHETE were 0.45 ± 0.2 ng/106 cells (mean ± SEM, n = 6), reaching about half the level of LTB4 (1.3 ± 0.5 ng/106 cells, n = 6). The COX-2 specific inhibitor NS-398 reduced the levels of 5,15-diHETE to below 0.02 ng/106 cells in four of six samples. Similar reduction was achieved by MK-886, an inhibitor of 5-LOX activating protein but the above differences were not statistically significant. Aspirin treatment of the activated cells allowed formation of 5,15-diHETE (0.1 ± 0.05 ng/106 cells, n = 6) but, as expected, abolished formation of 5,11-diHETE. The mixture of activated cells also produced 5S,12S-diHETE with the unusual 6E,8Z,10E double bond configuration, implicating biosynthesis by 5-LOX and 12-LOX activity rather than by hydrolysis of the leukotriene A4-epoxide. Exogenous octadeuterated 5S-HETE and 15S-HETE were converted to 5,15-diHETE, implicating that multiple oxygenation pathways of arachidonic acid occur in activated leukocytes. The contribution of COX-2 to the biosynthesis of dihydroxylated derivatives of arachidonic acid provides evidence for functional coupling with 5-LOX in activated human leukocytes.  相似文献   

6.
15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1/2 (15-LO1/2) metabolite of arachidonic acid (AA), induces CD36 expression through xanthine oxidase and NADPH oxidase-dependent ROS production and Syk and Pyk2-dependent STAT1 activation. In line with these observations, 15(S)-HETE also induced foam cell formation involving ROS, Syk, Pyk2, and STAT1-mediated CD36 expression. In addition, peritoneal macrophages from Western diet-fed ApoE-/- mice exhibited elevated levels of xanthine oxidase and NADPH oxidase activities, ROS production, Syk, Pyk2, and STAT1 phosphorylation, and CD36 expression compared to those from ApoE-/-:12/15-LO-/- mice and these events correlated with increased lipid deposits, macrophage content, and lesion progression in the aortic roots. Human atherosclerotic arteries also showed increased 15-LO1 expression, STAT1 phosphorylation, and CD36 levels as compared to normal arteries. Together, these findings suggest that 12/15-LO metabolites of AA, particularly 12/15(S)-HETE, might play a crucial role in atherogenesis by enhancing foam cell formation.  相似文献   

7.
The R and S enantiomers of 12-hydroxyeicosatetraenoic acid (12-HETE) exhibit different biological activities. Although they appear to be produced by different enzymatic pathways, cytochrome P-450 monooxygenase and lipoxygenase, respectively, they display similar metabolism in both corneal epithelium and neutrophils. In corneal epithelial microsomes, both enantiomers are subject to oxidation and keto reduction reactions to form the dihydro metabolite, 12-hydroxy-5,8,14-eicosatrienoic acid (12-HETrE), via a keto intermediate. The apparent Km for the formation of 12-HETrE was 17.9 and 20 μM for 12(R)-HETE and 12(S)-HETE, respectively, and the apparent Vmax of the reaction was 17.4 and 8.2 pmol/mg per min, respectively. Chiral analysis of the dihydro metabolite demonstrated a product enantiospecificty. Arachidonic acid, 12(R)-HETE, 12(S)-HETE and the intermediate of this reaction, 12-oxo-ETrE, were metabolized predominantly to 12(R)-HETrE in a ratio [12(R)-HETrE: 12(S)-HETrE] of 7.3:1, 4.3:1, 1.5:1 and 2.3:1, respectively. 12(R)-HETrE is a potent vasodilator, chemotactic and angiogenic factor whose synthesis is induced in inflamed tissues; 12(S)HETrE is devoid of these properties. 12(R)-HETE, derived from NADPH-dependent cytochrome P-450 monooxygenases, and 12(S)-HETE, derived from 12-lipoxygenase, may both play an important role in regulating the inflammatory response by serving as substrates for the local synthesis of 12(R)-HETrE.  相似文献   

8.
9.
10.
Biosynthesis of the prostaglandin endoperoxide by the cyclooxygenase (COX) enzymes is accompanied by formation of a small amount of 11R-hydroxyeicosatetraenoic acid (HETE), 15R-HETE, and 15S-HETE as by-products. Acetylation of COX-2 by aspirin abrogates prostaglandin synthesis and triggers formation of 15R-HETE as the sole product of oxygenation of arachidonic acid. Here, we investigated the formation of by-products of the transformation of 5S-HETE by native COX-2 and by aspirin-acetylated COX-2 using HPLC-ultraviolet, GC-MS, and LC-MS analysis. 5S,15S- dihydroxy (di)HETE, 5S,15R-diHETE, and 5S,11R-diHETE were identified as by-products of native COX-2, in addition to the previously described di-endoperoxide (5S,15S-dihydroxy-9S,11R,8S,12S-diperoxy-6E,13E-eicosadienoic acid) as the major oxygenation product. 5S,15R-diHETE was the only product formed by aspirin-acetylated COX-2. Both 5,15-diHETE and 5,11-diHETE were detected in CT26 mouse colon carcinoma cells as well as in lipopolysaccharide-activated RAW264.7 cells incubated with 5S-HETE, and their formation was attenuated in the presence of the COX-2 specific inhibitor, NS-398. Aspirin-treated CT26 cells gave 5,15-diHETE as the most prominent product formed from 5S-HETE. 5S,15S-diHETE has been described as a product of the cross-over of 5-lipoxygenase (5-LOX) and 15-LOX activities in elicited rat mononuclear cells and human leukocytes, and our studies implicate cross-over of the 5-LOX and COX-2 pathways as an additional biosynthetic route.  相似文献   

11.
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid.  相似文献   

12.
Lipoxygenases (ALOXs) are involved in the regulation of cellular redox homeostasis. They also have been implicated in the biosynthesis of pro- and anti-inflammatory lipid mediators and play a role in the pathogenesis of inflammatory diseases, which constitute a major health challenge owing to increasing incidence and prevalence in all industrialized countries around the world. To explore the pathophysiological role of Alox15 (leukocyte-type 12-LOX) in mouse experimental colitis we tested the impact of systemic inactivation of the Alox15 gene on the extent of dextrane sulfate sodium (DSS) colitis. We found that in wildtype mice expression of the Alox15 gene was augmented during DSS-colitis while expression of other Alox genes (Alox5, Alox15b) was hardly altered. Systemic Alox15 (leukocyte-type 12-LOX) deficiency induced less severe colitis symptoms and suppressed in vivo formation of 12-hydroxyeicosatetraenoic acid (12-HETE), the major Alox15 (leukocyte-type 12-LOX) product in mice. These alterations were paralleled by reduced expression of pro-inflammatory gene products, by sustained expression of the zonula occludens protein 1 (ZO-1) and by a less impaired intestinal epithelial barrier function. These results are consistent with in vitro incubations of colon epithelial cells, in which addition of 12S-HETE compromised enantioselectively transepithelial electric resistance. Consistent with these data transgenic overexpression of human ALOX15 intensified the inflammatory symptoms. In summary, our results indicate that systemic Alox15 (leukocyte-type 12-LOX) deficiency protects mice from DSS-colitis. Since exogenous 12-HETE compromises the expression of the tight junction protein ZO-1 the protective effect has been related to a less pronounced impairment of the intestinal epithelial barrier function.  相似文献   

13.
Oxidative stress contributes to dysfunction of glial cells in the optic nerve head (ONH). However, the biological basis of the precise functional role of mitochondria in this dysfunction is not fully understood. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain and a potent antioxidant, acts by scavenging reactive oxygen species (ROS) for protecting neuronal cells against oxidative stress in many neurodegenerative diseases. Here, we tested whether hydrogen peroxide (100 μM H2O2)-induced oxidative stress alters the mitochondrial network, oxidative phosphorylation (OXPHOS) complex (Cx) expression and bioenergetics, as well as whether CoQ10 can ameliorate oxidative stress-mediated alterations in mitochondria of the ONH astrocytes in vitro. Oxidative stress triggered the activation of ONH astrocytes and the upregulation of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) protein expression in the ONH astrocytes. In contrast, CoQ10 not only prevented activation of ONH astrocytes but also significantly decreased SOD2 and HO-1 protein expression in the ONH astrocytes against oxidative stress. Further, CoQ10 prevented a significant loss of mitochondrial mass by increasing mitochondrial number and volume density and by preserving mitochondrial cristae structure, as well as promoted mitofilin and peroxisome-proliferator-activated receptor-γ coactivator-1 protein expression in the ONH astrocyte, suggesting an induction of mitochondrial biogenesis. Finally, oxidative stress triggered the upregulation of OXPHOS Cx protein expression, as well as reduction of cellular adeonsine triphosphate (ATP) production and increase of ROS generation in the ONH astocytes. However, CoQ10 preserved OXPHOS protein expression and cellular ATP production, as well as decreased ROS generation in the ONH astrocytes. On the basis of these observations, we suggest that oxidative stress-mediated mitochondrial dysfunction or alteration may be an important pathophysiological mechanism in the dysfunction of ONH astrocytes. CoQ10 may provide new therapeutic potentials and strategies for protecting ONH astrocytes against oxidative stress-mediated mitochondrial dysfunction or alteration in glaucoma and other optic neuropathies.  相似文献   

14.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

15.
Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism.  相似文献   

16.
BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α[[tumor necrosis factor alpha], and IL-1β [interleukin-1β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.  相似文献   

17.
Compelling evidence indicates that activation of the JNK/SAPK signaling pathway is obligatory for apoptosis induction by multiple cell stresses that activate the sphingomyelin cycle. Moreover, ectopic expression of bcl-2 can impair apoptosis signaling by most of the cell stresses that activate the ceramide/JNK pathway. Here we show that enforced expression of bcl-2 protects prostate carcinoma cells against the induction of apoptosis by exogenous C2-ceramide. Moreover, enforced bcl-2 expression blocked the capacity of C2-ceramide to activate JNK1, indicating bcl-2 functions at the level of JNK1 or upstream of JNK1 in the ceramide/JNK pathway. The contribution of bcl-2 to the regulation of the arachidonate pathway for prostate carcinoma cell survival was also investigated using highly selective inhibitors of arachidonate metabolism. Our results indicate bcl-2 can protect cells against diminished availability of arachidonic acid, 12-HETE, and 15-HETE. Finally, arachidonic acid substantially suppresses the induction of apoptosis by C2-ceramide, providing evidence for the opposing influences of these lipid signaling pathways in the mediation of prostate carcinoma cell survival. These results provide evidence for opposing influences of the ceramide and arachidonate signaling pathways in the mediation of cell death and cell survival, respectively, in prostate carcinoma cells and suggest a dual role for bcl-2 in this context.  相似文献   

18.
Epidemiologic and animal studies have linked pancreatic cancer growth with fat intake, especially unsaturated fats. Arachidonic acid release from membrane phospholipids is essential for tumor cell proliferation. Lipoxygenases (LOX) constitute one pathway for arachidonate metabolism, but their role in pancreatic cancer growth is unknown. The expression of 5-LOX and 12-LOX as well as their effects on cell proliferation was investigated in four human pancreatic cancer cell lines (PANC-1, MiaPaca2, Capan2, and ASPC-1). Expression of 5-LOX and 12-LOX mRNA was measured by nested RT-PCR. Effects of LOX inhibitors and specific LOX antisense oligonucleotides on pancreatic cancer cell proliferation were measured by (3)H-thymidine incorporation. Our results showed that (1) 5-LOX and 12-LOX were expressed in all pancreatic cancer cell lines tested, while they were not detectable in normal human pancreatic ductal cells; (2) both LOX inhibitors and LOX antisense markedly inhibited cell proliferation in a concentration-dependent and time-dependent manner; (3) the 5-LOX and 12-LOX metabolites 5-HETE and 12-HETE as well as arachidonic and linoleic acids directly stimulated pancreatic cancer cell proliferation; (4) LOX inhibitor-induced growth inhibition was reversed by 5-HETE and 12-HETE. The current studies indicate that both 5-LOX and 12-LOX expression is upregulated in human pancreatic cancer cells and LOX plays a critical role in pancreatic cancer cell proliferation. LOX inhibitors may be valuable for the treatment of pancreatic cancer.  相似文献   

19.
20.
A convincing body of evidence suggests that 12/15-lipoxygenase (12/15-LO) plays a role in atherosclerosis. However, the mechanisms of its involvement in the pathogenesis of this disease are not clear. Therefore, the purpose of this study is to understand the mechanisms by which 12/15-LO mediates endothelial dysfunction. 15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 12/15-LO metabolite of arachidonic acid (AA), induced endothelial barrier permeability via Src and Pyk2-dependent zonula occluden (ZO)-2 tyrosine phosphorylation and its dissociation from the tight junction complexes. 15(S)-HETE also stimulated macrophage adhesion to the endothelial monolayer in Src and Pyk2-dependent manner. Ex vivo studies revealed that exposure of arteries from WT mice to AA or 15(S)-HETE led to Src-Pyk2-dependent ZO-2 tyrosine phosphorylation, tight junction disruption, and macrophage adhesion, whereas the arteries from 12/15-LO knock-out mice are protected from these effects of AA. Feeding WT mice with a high-fat diet induced the expression of 12/15-LO in the arteries leading to tight junction disruption and macrophage adhesion and deletion of the 12/15-LO gene disallowed these effects. Thus, the findings of this study provide the first evidence of the role of 12/15-LO and its AA metabolite, 15(S)-HETE, in high-fat diet-induced endothelial tight junction disruption and macrophage adhesion, the crucial events underlying the pathogenesis of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号