首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson's disease is a progressive neurodegenerative disorder, associated with the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Recent studies have shown that c-Jun-N terminal kinase pathways might be involved in the oxidative stress-induced neuronal demise. In addition, there are several studies demonstrating that selegiline protects neural cell degeneration. In view of the above, the toxic effects of MPP(+) and the protective roles of selegiline were studied in cultures of human neuroblastoma (SK-N-SH) cell lines in the present study. MPP(+) significantly decreased cell viability but increased reactive oxygen species formation and lipid peroxidation, and the said effects were attenuated by selegiline. MPP(+) did not change the total levels of c-Jun but enhanced phosphorylation of c-Jun at Ser73 and cleavage of DNA fragmentation factor 45, which were diminished by selegiline. MPP(+)-treated SK-N-SH cells exhibited an irregularly shaped nuclear chromatin or DNA fragmentation, which was abolished by selegiline. These data suggest that c-Jun-N terminal kinase pathways are involved in oxidative stress-induced dopaminergic neuronal degeneration and pretreatment with selegiline affords neuroprotection by inhibiting these cell death-signaling pathways.  相似文献   

2.
The biochemical pathways that mediate the degeneration of dopaminergic neurons in the substantia nigra of patients with Parkinson’s disease are largely unknown. Recently, aberrant cell cycle events have been shown to be associated with neuronal death in several neurodegenerative diseases. In the present study, we investigated the role of DNA polymerases (DNA pols) in 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis in cerebellar granule cells. After exposure to MPP+, the neurons entered S phase of the cell cycle. Neuronal cell cycle re-entry and apoptosis were attenuated by flavopiridol, which is a broad inhibitor of cyclin-dependent kinases (CDKs). MPP+ exposure significantly increased the expression of DNA pol-β and primase but did not affect the expression of the canonical replicative DNA pols, including DNA pol-δ and pol-ε. Dideoxycytidine, which is a pharmacological inhibitor of DNA pol-β, attenuated the neuronal apoptosis mediated by MPP+. In a similar manner, the expression of a dominant negative form of DNA pol-β was also neuroprotective. These results suggest that DNA pol-β may have a causal role in MPP+-induced neuronal apoptosis.  相似文献   

3.
Wang X  Su B  Liu W  He X  Gao Y  Castellani RJ  Perry G  Smith MA  Zhu X 《Aging cell》2011,10(5):807-823
Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease (PD) can be modeled by the administration of the neurotoxin 1‐methyl‐4‐phenylpyridinium (MPP+). Because abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH‐SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+‐induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+‐induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+‐induced toxicity. On the other hand, thiol antioxidant N‐acetylcysteine or glutamate receptor antagonist D‐AP5 also partially alleviates MPP+‐induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+‐induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μm MPP+ induced mitochondrial fragmentation only in tyrosine hydroxylase (TH)‐positive dopaminergic neurons in a similar pattern to that in SH‐SY5Y cells but had no effects on these mitochondrial parameters in TH‐negative neurons. Overall, these findings suggest that DLP1‐dependent mitochondrial fragmentation plays a crucial role in mediating MPP+‐induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD.  相似文献   

4.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP+/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP+; lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness.  相似文献   

5.
Several lines of evidence suggest that the mechanism underlying drug-induced neuronal apoptosis is initiated by the increased production of reactive oxygen species (ROS). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin, has been shown to initiate an apoptotic cascade by increasing ROS in the dopaminergic neurons of the substantia nigra, leading to the morphological and physiological features associated with Parkinson’s disease. Recently, it has been reported that autophagy, a type of programmed cell death independent of the apoptotic cascade, also plays a role in neuronal damage. Although autophagy is negatively regulated by the mammalian target of rapamycin receptor (mTOR), there is some evidence showing a novel function for the anti-apoptotic protein Bcl-2. Bcl-2 is proposed to play a role in negatively regulating autophagy by blocking an essential protein in the signaling pathway, Beclin 1. Nevertheless, it is unclear whether autophagy is also correlated with apoptotic signaling in 1-methyl-4-phenylpyridinium (MPP+) toxicity. Therefore, we hypothesized that the MPP+ toxicity generally associated with initiating the apoptotic signaling cascade also increases an autophagic phenotype in neuronal cells. Using the SK-N-SH dopaminergic cell lines, we demonstrate that MPP+ increases the expression of microtubule-associated protein light chain 3 (LC3-II), an autophagosome membrane marker and the mTOR signaling pathway, and Beclin 1 while decreasing the Bcl-2 levels. Moreover, these expressions correlate with a decreased binding ratio between Bcl-2 and Beclin 1, in effect limiting the regulation of the downstream autophagic markers, such as LC3-II. Our results indicate that MPP+ can induce autophagy in SK-N-SH cells by decreasing the Bcl-2/Beclin 1 complex.  相似文献   

6.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

7.
Vasonatrin peptide (VNP), a novel manmade natriuretic peptide, is known as a cardiovascular active substance. However, its neuroeffects are largely unknown. Here, cultured dopaminergic neurons from ventral mesencephalon of mouse were exposed to N-methyl-4-phenylpyridinium (MPP+), and the effects of VNP on the neurotoxicity of MPP+ were investigated. As a result, MPP+ caused injuries in the dopaminergic neurons. VNP significantly reduced the cytotoxicity of MPP+ by increasing axon number and length of dopaminergic neurons, and by enhancing the cell viability. Also, the MPP+-induced depolymerization of β-Tubulin III was attenuated by the treatment of VNP. In addition, VNP significantly increased the intracellular levels of cGMP. These effects of VNP were mimicked by 8-br-cGMP (a cell-permeable analog of cGMP), whereas inhibited by HS-142-1 (the antagonist of the particulate guanylyl cyclase-coupled natriuretic peptide receptors), or KT-5823 (a cGMP-dependent protein kinase inhibitor). Taken together, VNP attenuates the neurotoxicity of MPP+ via guanylyl cyclase-coupled NPR/cGMP/PKG pathway, indicating that VNP might be a new effective reagent in the treatment of neuron degeneration of dopaminergic neurons in Parkinson's disease (PD).  相似文献   

8.
The molecular mechanism of 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonism-inducing neurotoxin, has been studied in PC12 cells. The cells treated with MPP+ (100 μM) induced a rapid increase in phosphorylation of tyrosine residues of several proteins, including synaptophysin, a major 38 kDa synaptic vesicle protein implicated in exocytosis. An accelerated release of dopamine by MPP+ correlated with phosphorylation of synaptophysin. Exposing the cells to MPP+ triggered reactive oxygen species (ROS) generation within 60 min of treatment and the said effect was blocked by mazindol, a dopamine uptake blocker. In addition, pretreatment with 50–100 μM of selegiline, a selective MAO-B inhibitor, significantly suppressed MPP+-mediated ROS generation. These effects of MPP+ result in the generation of ROS, which may be involved in neuronal degeneration seen in Parkinson’s disease.  相似文献   

9.
10.
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP+-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP+. Further, microRNA-7 fails to prevent MPP+-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP+-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.  相似文献   

11.
Reactive oxygen species produced by oxidative stress may participate in the apoptotic death of dopamine neurons distinctive of Parkinson’s disease. Resveratrol, a red wine extract, and quercetin, found mainly in green tea, are two natural polyphenols, presenting antioxidant properties in a variety of cellular paradigms. The aim of this study was to evaluate the effect of resveratrol and quercetin on the apoptotic cascade induced by the administration of 1-methyl-4-phenylpyridinium ion (MPP+), a Parkinsonian toxin, provoking the selective degeneration of dopaminergic neurons. Our results show that a pre-treatment for 3 h with resveratrol or quercetin before MPP+ administration could greatly reduce apoptotic neuronal PC12 death induced by MPP+. We also demonstrated that resveratrol or quercetin modulates mRNA levels and protein expression of Bax, a pro-apoptotic gene, and Bcl-2, an anti-apoptotic gene. We then evaluated the release of cytochrome c and the nuclear translocation of the apoptosis-inducing factor (AIF). Altogether, our results indicate that resveratrol and quercetin diminish apoptotic neuronal cell death by acting on the expression of pro- and anti-apoptotic genes. These findings support the role of these natural polyphenols in preventive and/or complementary therapies for several human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

12.
13.
The selective loss of dopaminergic neurons in the substantia nigra pars compacta is a feature of Parkinson’s disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is the most common experimental model used to investigate the pathogenesis of PD. Administration of MPTP in mice produces neuropathological defects as observed in PD and 1-methyl-4-pyridinium (MPP+) induces cell death when neuronal cell cultures are used. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. In the present study, we demonstrated that AMPK is activated by MPTP in mice and MPP+ in SH-SY5Y cells. The inhibition of AMPK by compound C resulted in an increase in MPP+-induced cell death. We further showed that overexpression of AMPK increased cell viability after exposure to MPP+ in SH-SY5Y cells. Based on these results, we suggest that activation of AMPK might prevent neuronal cell death and play a role as a survival factor in PD.  相似文献   

14.
Recent studies have indicated that the corticotropin releasing hormone (CRF)-related peptide, urocortin, restores key indicators of damage in animal models for Parkinson’s disease (PD). However, the molecular mechanism for the neuroprotective effect of urocortin is unknown. 1-Methy-4-phenylpyridinium (MPP+) induces dopaminergic neuronal death. In the present study, MPP+-induced neuroblastoma SH-SY5Y cell death was significantly attenuated by urocortin in a concentration-dependent manner. The protective effect of urocortin involved the activation of CRF receptor type 1, resulting in the increase of cyclic AMP (cAMP) levels. Various cAMP-enhancing reagents mimicked the effect of urocortin, while inhibitors for protein kinase A (PKA) blocked the effect of urocortin, strongly implicating the involvement of cAMP-PKA pathway in the neuroprotective effect of urocortin on MPP+-induced cell death. As the downstream of this signal pathway, urocortin promoted phosphorylation of both glycogen synthase kinase 3β and extracellular signal-regulated kinases, which are known to promote cell survival. These neuroprotective signaling pathways of urocortin may serve as potential therapeutic targets for PD.  相似文献   

15.
16.
Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117–4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP+) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP+-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP+-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.  相似文献   

17.
Niu  Jianyi  Xiong  Jing  Hu  Dan  Zeng  Fei  Nie  Shuke  Mao  Shanping  Wang  Tao  Zhang  Zhentao  Zhang  Zhaohui 《Neurochemical research》2017,42(10):2996-3004

DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.

  相似文献   

18.
Parkinson''s disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP+) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar protein sorting 35 (vps35) gene segregates with Parkinson''s disease in some families, but how mutation in the vps35 gene causes dopaminergic cell death is not known. Here, we report that enhanced VPS35 expression protected dopaminergic cells against MPP+ toxicity and that this neuroprotection was compromised by pathogenic mutation in the gene. A loss of neuroprotective functions contributes to the pathogenesis of VPS35 mutation in Parkinson''s disease.  相似文献   

19.
Parkinson’s disease is an incurable progressive neurological condition caused by a degeneration of dopamine-producing cells characterized by motor and non-motor symptoms. The major mechanisms of the antiepileptic actions of ZNS are inhibition of voltage-gated Na+ channel, T-type voltage-sensitive Ca2+ channel, Ca2+-induced Ca2+ releasing system, and neuronal depolarization-induced glutamate release; and enhancement of release of inhibitory neurotransmitters; however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. We aimed to investigate to the effect of ZNS on the oxidative stress, cell viability, Ca2+ signaling, and caspase activity that induced by the MPP+ model of Parkinson’s in neuronal PC12 cells. Neuronal PC12 cells were divided into four groups namely, control, ZNS, MPP+, and ZNS+MPP+ groups. The dose and duration of ZNS and MPP+ were determined according to cell viability (MTT) analysis which used to assess the cell viability. The cells in ZNS, MPP+, and ZNS+MPP+ groups were incubated for 5 h with 100 μM ZNS, 10 h with 100 μM MPP+, and 10 h with ZNS and MPP+, respectively. Lipid peroxidation and cytosolic free Ca2+ concentrations were higher in the MPP+ group than in control although their levels were lower in ZNS and the ZNS+MPP+ groups than in control. Reduced glutathione and glutathione peroxidase values were lower in the MPP+ group although they were higher in the ZNS and the ZNS+MPP+ groups than in control. Caspase-3 activity was lower in the ZNS group than in the MPP+ group. In conclusion, ZNS induced modulator effects on the oxidative stress, intracellular Ca2+, and the caspase-3 values in an experimental model of Parkinson disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号