首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[(3)H]noradrenaline ([(3)H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2Hz, 1ms, 60V for 3min) in the presence of uptake blockers (cocaine, 3 x10(-5)M and corticosterone, 5 x10(-5)M). The [(3)H]NA-release was fully blocked by the combined application of the selective and irreversible 'N-type' voltage-sensitive Ca(2+)-channel (VSCC)-blocker omega-conotoxin (omega-CgTx) GVIA (10(-8)M) and the 'non-selective' VSCC-blocker aminoglycoside antibiotic neomycin (3x10(-3)M). Na(+)-loading (Na(+)-pump inhibition by K(+)-free perfusion) was required to elicit further NA-release after blockade of VSCCs (omega-CgTx GVIA+neomycin). In K(+)-free solution, in the absence of functioning VSCCs (omega-CgTx GVIA+neomycin), the fast Na(+)-channel activator veratridine (10(-5)M) further potentiated the nerve-evoked release of [(3)H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Ca(o)(2+)-removal. However, Li(+)-substitution was surprisingly ineffective. The non-selective K(+)-channel blocker 4-aminopyridine (4-AP, 10(-4)M) also further potentiated the nerve-evoked release of NA in K(+)-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li(+)-substitution and abolished by Ca(o)(2+)-removal. It is concluded that in Na(+)-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na(+)/Ca(2+)-exchange-mediated Ca(2+)-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na(+)-channel and the exchanger proteins are close to the vesicle docking sites.  相似文献   

2.
Electrical depolarisation-(2 Hz, 1 ms)-induced [3H]noradrenaline ([3H]NA) release has been measured from the isolated main pulmonary artery of the rabbit in the presence of uptake blockers (cocaine, 3 x 10(-5) M; corticosterone, 5 x 10(-5) M). Substitution of most of the external Na+ by Li+ (113 mM; [Na+]0: 25 mM) slightly potentiated the axonal stimulation-evoked release of [3H]NA in a tetrodotoxin (TTX, 10(-7) M) sensitive manner. The reverse Na+/Ca2+-exchange inhibitor KB-R7943 (3 x 10(-5) M) failed to inhibit the stimulation-evoked release of [3H]NA, but increased the resting outflow of neurotransmitter. The 'N-type' voltage-sensitive Ca2+-channel (VSCC) blocker omega-conotoxin (omega-CgTx) GVIA (10(-8) M) significantly and irreversibly inhibited the release of [3H]NA on stimulation (approximately 60-70%). The 'residual release' of NA was abolished either by TTX or by reducing external Ca2+ from 2.5 to 0.25 mM. The 'residual release' of NA was also blocked by the non-selective VSCC-blocker neomycin (3 x 10(-3) M). Correlation was obtained between the extent of VSCC-inhibition and the transmitter release-enhancing effect of presynaptic alpha2-receptor blocker yohimbine (3 x 10(-7) M). When the release of [3H]NA was blocked by omega-CgTx GVIA plus neomycin, yohimbine was ineffective. Inhibition of the Na+-pump by removal of K+ from the external medium increased both the resting and the axonal stimulation-evoked release of [3H]NA in the absence of functioning VSCCs (i.e., in the presence of neomycin and after omega-CgTx treatment). Under these conditions the stimulation-evoked release of NA was abolished either by TTX or by external Ca2+-removal (+1 mM EGTA). Similarly, external Li+ (113 mM) or the reverse Na+/Ca2+ exchange blocker KB-R7943 (3 x 10(-5) M) significantly inhibited the stimulation-induced transmitter release in 'K+-free' solution. KB-R7943 decreased the resting outflow of NA as well. Under conditions in which the Na+-pump was inhibited in the absence of functioning VSCCs, yohimbine (3 x 10(-7) M) further enhanced the release of neurotransmitter, while l-noradrenaline (l-NA, 10(-6) M), an agonist of presynaptic alpha2-receptors, inhibited it. The yohimbine-induced enhancement of NA-release was abolished by Li+-substitution and significantly inhibited by KB-R7943 application. It is concluded that after blockade of VSCCs brief depolarising pulses may reverse Na+/Ca2+-exchange and release neurotransmitter in Na+-loaded sympathetic nerves. Further, similar to that of VSCCs, the reverse Na+/Ca2+-exchange may also be regulated by presynaptic alpha2-receptors.  相似文献   

3.
Transport of 45Ca2+ into vesicules of hog myometrium plasmolemma under dissipation conditions of opposite-directed transmembrane gradient of protons (delta pH) was investigated. When studying some time regularities of the process, H+ dissipation was determined to have little effect on the initial velocity Vo (18 and 25 nmol Ca2+/1 mg of protein per 1 min at delta pH = 0 and delta pH = 1.5, respectively) and the time of semiaccumulation of cation (1.1 and 2.1 min). Estimation of Ca2+ accumulation concentrational dependence in the vesicules in Vo (30 s) revealed that Ca2+ input into vesicules was limited by binding the cation with carboxyl residues of Ca2+ channel external part. This effect is a consequence of the absence of Ca(2+)-transport systems in the vesicules on the background of quick filling of the intervesicular space by the cation as well as discrimination of Ca2+ sorption process by the vesicules inner surface under operating in the Vo regime. The value K0.5 = 0.5 microM for Ca2+ obtained conforms to physiological meaning of the imagined Kd, Ca2+ binding with four glutamate residues of Ca2+ channel external part. Dissipation of the artificial delta pH = 1.5 on the vesicular membrane leads to increasing the affinity for Ca2+ (to 0.1 microM at constant value of Vmax (40 nmol Ca2+/1 mg of protein per 1 min). We have also demonstrated irreversibility of the process tested and substrate specificity. The results obtained permit to suppose that delta pH dissipation provides for some conformational changes of the channel structure resulting in increasing Ca2+ affinity for the transporting system as well as increases the membrane permeability for the cation. The latter means the interrelation of two most important signal molecules such as Ca2+ and H+ in the cell is capable to occur on the level on Ca2+ separate channels.  相似文献   

4.
5.
Trigger Ca(2+) is considered to be the Ca(2+) current through the L-type Ca(2+) channel (LTCC) that causes release of Ca(2+) from the sarcoplasmic reticulum. However, cell contraction also occurs in the absence of the LTCC current (I(Ca)). In this article, we investigate the contribution of the Na(+)/Ca(2+) exchanger (NCX) to the trigger Ca(2+). Experimental data from rat cardiomyocytes using confocal microscopy indicating that inhibition of reverse mode Na(+)/Ca(2+) exchange delays the Ca(2+) transient by 3-4 ms served as a basis for the mathematical model. A detailed computational model of the dyadic cleft (fuzzy space) is presented where the diffusion of both Na(+) and Ca(2+) is taken into account. Ionic channels are included at discrete locations, making it possible to study the effect of channel position and colocalization. The simulations indicate that if a Na(+) channel is present in the fuzzy space, the NCX is able to bring enough Ca(2+) into the cell to affect the timing of release. However, this critically depends on channel placement and local diffusion properties. With fuzzy space diffusion in the order of four orders of magnitude lower than in water, triggering through LTCC alone was up to 5 ms slower than with the presence of a Na(+) channel and NCX.  相似文献   

6.
7.
The Na+/Ca2+ exchange system is the primary Ca2+ efflux mechanism in cardiac myocytes, and plays an important role in controlling the force of cardiac contraction. The exchanger protein contains 11 transmembrane segments plus a large hydrophilic domain between the 5th and 6th transmembrane segments; the transmembrane regions are reponsible for mediating ion translocation while the hydrophilic domain is responsible for regulation of activity. Exchange activity is regulated in vitro by interconversions between an active state and either of two inactive states. High concentrations of cytosolic Na+ or the absence of cytosolic Ca2+ promote the formation of the inactive states; phosphatidylinositol-(4,5)bisphosphate (or other negatively charged phospholipids) and cytosolic Ca2+ counteract the inactivation process. The importance of these mechanisms in regulating exchange activity under normal physiological conditions is uncertain. Exchanger function is also dependent upon cytoskeletal interactions, and the exchanger's location with respect to intracellular Ca2+-sequestering organelles. An understanding of the exchanger's function in normal cell physiology will require more detailed information on the proximity of the exchanger and other Ca2+-transporting proteins, their interactions with the cytoskeleton, and local concentrations of anionic phospholipids and transported ions.  相似文献   

8.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

9.
Membrane-intrinsic transport systems play an essential role in intracellular Ca2+ homeostasis. ATP-driven Ca2+ pumps and carrier-mediated Na+/Ca2+ exchangers are the two specific Ca2+ transporting systems mainly responsible for Ca2+ extrusion across the plasma membrane. Ca2+ pumps operate in all eukaryotic cell types and are characterized by their high Ca2+ affinity and their specific regulation by direct interaction with Ca2+/calmodulin. Na+/Ca2+ exchangers are particularly abundant in excitable tissues and are responsible for the bulk Ca2+ efflux in these tissues. Recent success in the molecular characterization of the pumps has led to the determination of complete amino acid sequences for several isoforms and has allowed the identification and topological assignment of important functional and regulatory domains. Genetic evidence indicates that mammalian Ca2+ pump diversity is generated from a multigene family and via alternative RNA splicing. Different isoforms may vary in their regulatory properties, presumably reflecting different physiological requirements of the tissues of their expression. Although the molecular characterization of Na+/Ca2+ exchangers is not as far advanced as that of the pumps, recent studies have established detailed kinetic, stoichiometric and regulatory properties of these systems. Together with advances in expression cloning methods these studies promise to result in a rapid improvement of our knowledge of the functional properties of these ion transporters on a molecular level.  相似文献   

10.
In experiments on human and rat platelets the changes in cytoplasmic pH (pHi) and Ca2+ concentration (Ca2+) have been studied by the use of fluorescent probes BCECF and quin-2, respectively. Inhibition of Na+/H+ exchange resulted in removal of external Na+ (equimolar substitution by cholin) induced a considerable reduction of Ca2+-signal caused by 10 mMPAF, and a slight decrease in Ca2+-signal elicited by 0.1 mu/ml thrombin. In the control Na+ and Ca2+ containing medium both PAF and thrombin induced first a decrease then an increase of pHi above its original level. The latter phase being much more pronounced in the case of thrombin action. Removal of Ca2+ from the external solution suppressed pHi increase and correspondingly it enhanced initial decrease. Addition of Ni2+ also suppressed stimulus-induced pHi increase. A treatment of platelets by Ca-ionophore A23187 caused a rise of pHi without its initial decrease; in medium without Ca2+ the changes of pHi were inhibited. The results obtained suggest that in platelets there exist a mutual interdependence between Ca2+ influx and change in pHi: Ca2+ influx enhanced the activation of Na+/H+ exchange by agonist; in turn Na+/H+ exchange activation enhances the stimulus-induced Ca2+ influx.  相似文献   

11.
Cardiac Na+/Ca(2+)-exchange is an integral membrane protein consisting of approx. 970 amino acids with as many as 12 membrane-spanning and 11 extramembranal regions (Nicoll, D.A., Lognoni, S. and Philipson, K.D. (1985) Science 250, 562-565). Based upon primary sequence information, 3 amino-acid sequences located in either extramembranal segment a or f, consisting largely of acidic amino-acids, were selected for the production of synthetic peptides. The peptides were cross-linked to carrier ovalbumin and used to generate site-directed polyclonal antibodies (sd-Ab). Western blot analysis of bovine cardiac sarcolemmal (SL) proteins demonstrated that sd-Ab against segment a and 1 against loop f recognized a 70 kDa protein and a lower molecular mass band at 55 kDa under reducing conditions. A different loop f sd-Ab failed to recognize the 70 kDa protein but did associate with a 120, 65 and 55 kDa protein under the same conditions. Under non-reducing conditions, antibodies to all three peptides recognized the 65 kDa protein. All sd-Ab were blocked by addition of their respective peptides and were not inhibited by either of the other peptides. A sd-Ab against loop f was immobilized to an affinity support matrix and used to immunoprecipitate detergent solubilized cardiac SL vesicle protein. Immunoprecipitated protein was reconstituted into proteoliposomes which demonstrated Na+/Ca(2+)-exchange activity. Immunoprecipitated protein cross-reacted with sd-Ab against all three peptides with bands at 120, 70 and 55 kDa on Western blots. Tryptic digests of native SL vesicles abolished recognition of segment a sd-Ab for SL proteins while having little or no affect on reactivity to the protein by both sd-Ab against loop f. Digestion of the SL vesicle protein with endoproteinase Arg C did not alter sd-Ab recognition. The results suggest that specific domains of the cardiac Na+/Ca(2+)-exchanger depending upon the conformation of the protein, may not be available for antibody binding. The 70 kDa polypeptide appears to include the N-terminal region of the protein and what is believed to be a large cytoplasmic extramembranal loop. Limited proteolysis by trypsin and endoproteinase Arg C yielded results consistent with the model which places the N-terminus of the protein on the extracellular surface and a large extramembranal segment (loop f) on the cytoplasmic side of the SL membrane.  相似文献   

12.
Hille C  Walz B 《Cell calcium》2006,39(4):305-311
Stimulation with the neurotransmitter dopamine causes an amplitude-modulated increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in epithelial cells of the ducts of cockroach salivary glands. This is completely attributable to a Ca(2+) influx from the extracellular space. Additionally, dopamine induces a massive [Na(+)](i) elevation via the Na(+)K(+)2Cl(-) cotransporter (NKCC). We have reasoned that Ca(2+)-entry is mediated by the Na(+)Ca(2+) exchanger (NCE) operating in the Ca(2+)-entry mode. To test this hypothesis, [Ca(2+)](i) and [Na(+)](i) were measured by using the fluorescent dyes Fura-2, Fluo-3, and SBFI. Inhibition of Na(+)-entry from the extracellular space by removal of extracellular Na(+) or inhibition of the NKCC by 10 microM bumetanide did not influence resting [Ca(2+)](i) but completely abolished the dopamine-induced [Ca(2+)](i) elevation. Simultaneous recordings of [Ca(2+)](i) and [Na(+)](i) revealed that the dopamine-induced [Na(+)](i) elevation preceded the [Ca(2+)](i) elevation. During dopamine stimulation, the generation of an outward Na(+) concentration gradient by removal of extracellular Na(+) boosted the [Ca(2+)](i) elevation. Furthermore, prolonging the dopamine-induced [Na(+)](i) rise by blocking the Na(+)/K(+)-ATPase reduced the recovery from [Ca(2+)](i) elevation. These results indicate that dopamine induces a massive NKCC-mediated elevation in [Na(+)](i), which reverses the NCE activity into the reverse mode causing a graded [Ca(2+)](i) elevation in the duct cells.  相似文献   

13.
14.
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).  相似文献   

15.
16.
We have previously demonstrated that rat cerebellar Type-1 astrocytes express a very active genistein sensitive Na(+)/Ca(2+) exchanger, which accounts for most of the total plasma membrane Ca(2+) fluxes and for the clearance of loads induced by physiological agonists. In this work, we have explored the mechanism by which the reverse Na(+)/Ca(2+) exchange is involved in agonist-induced Ca(2+) signaling in rat cerebellar astrocytes. Microspectrofluorometric measurements of Cai(2+) with Fluo-3 demonstrate that the Cai(2+) signals associated long (> 20 s) periods of reverse operation of the Na(+)/Ca(2+) exchange are amplified by a mechanism compatible with calcium-calcium release, while those associated with short (< 20 s) pulses are not amplified. This was confirmed by pharmacological experiments using ryanodine receptors agonist (4-chloro-m-cresol) and the endoplasmic reticulum ATPase inhibitor (thapsigargin). Confocal microscopy demonstrates a high co-localization of immunofluorescent labeled Na(+)/Ca(2+) exchanger and RyRs. Low (< 50 micromol/L) or high (> 500 micromol/L) concentrations of L-glutamate (L-Glu) or L-aspartate causes a rise in which is completely blocked by the Na(+)/Ca(2+) exchange inhibitors KB-R7943 and SEA0400. The most important novel finding presented in this work is that L-Glu activates the reverse mode of the Na(+)/Ca(2+) exchange by inducing Na(+) entry through the electrogenic Na(+)-Glu-co-transporter and not through the ionophoric L-Glu receptors, as confirmed by pharmacological experiments with specific blockers of the ionophoric L-Glu receptors and the electrogenic Glu transporter.  相似文献   

17.
Intracellular [Na+]i and [Ca2+]i imbalance significantly contribute to neuro-axonal dysfunctions and maladaptive myelin repair or remyelination failure in chronic inflammatory demyelinating diseases such as multiple sclerosis. Progress in recent years has led to significant advances in understanding how [Ca2+]i signaling network drive degeneration or remyelination of demyelinated axons.The Na+/Ca2+ exchangers (NCXs), a transmembrane protein family including three members encoded by ncx1, ncx2, and ncx3 genes, are emerging important regulators of [Na+]i and [Ca2+]i both in neurons and glial cells. Here we review recent advance highlighting the role of NCX exchangers in axons and myelin-forming cells, i.e. oligodendrocytes, which represent the major targets of the aberrant inflammatory attack in multiple sclerosis. The contribution of NCX subtypes to axonal pathology and myelin synthesis will be discussed. Although a definitive understanding of mechanisms regulating axonal pathology and remyelination failure in chronic demyelinating diseases is still lacking and requires further investigation, current knowledge suggest that NCX activity plays a crucial role in these processes. Defining the relative contributions of each NCX transporter in axon pathology and myelinating glia will constitute not only a major advance in understanding in detail the intricate mechanism of neurodegeneration and remyelination failure in demyelinating diseases but also will help to identify neuroprotective or remyelinating strategies targeting selective NCX exchangers as a means of treating MS.  相似文献   

18.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

19.
We previously observed Ca2+ release from intracellular Ca2+ stores caused by reduction in extracellular Na+ concentration ([Na+]o). The purpose of this study was to determine whether lowering [Na+]o can elicit Ca2+ release from Ca2+ stores via the Na+/Ca2+ exchanger and to elucidate the mechanisms related to the Ca2+ release pathway in cultured longitudinal smooth muscle cells obtained from guinea pig ileum. Low [Na+]o-induced Ca2+ release was inhibited by antisense oligodeoxynucleotides for Na+/Ca2+ exchanger type 1 (anti-NCX). Application of anti-NCX to cells attenuated both the number of Ca2+ responding cells and the expression of the exchanger. Moreover, microinjection of heparin, a blocker of inositol 1,4,5-trisphosphate (IP3) receptors, into the cells inhibited low [Na+]o-induced Ca2+ release. These findings suggest that low [Na+]o-induced Ca2+ release occurs through an IP3-induced Ca2+ release mechanism due to changes in the Ca2+ flux regulated by the Na+/Ca2+ exchanger.  相似文献   

20.
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号