首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We performed adoptive transfer of bone marrow-derived (BM) macrophages following pharmacological depletion of leukocytes in a mouse model of unilateral ureteral obstruction (UUO). Treatment with cyclophosphamide (CPM) caused marked decrease in the numbers of F4/80-positive interstitial macrophages as well as in peripheral blood leukocyte counts, and adoptive transfer of BM macrophages to CPM-treated mice resulted in significant increase in the numbers of interstitial macrophages both at day 5 and at day 14 after UUO. At day 5 after UUO, no significant change was observed in the degree of renal interstitial fibrosis either by treatment with CPM or with CPM+macrophage. However, at day 14 after UUO, treatment with CPM caused significant increase in the degree of interstitial fibrosis, and adoptive macrophage transfer to these mice attenuated this enhancement in renal fibrosis. Our result suggests the role of infiltrating macrophages on facilitating tissue repair at late stage of UUO.  相似文献   

4.
5.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Flavonoids have been shown to confer beneficial health effects, including hepatoprotection. However, the molecular mechanism of flavonoid-mediated hepatoprotection is incompletely understood. In this study, we report the protective effect of quercetin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Daily oral administration of quercetin was started 1 week before injury and lasted for 4 weeks. In comparison with the control group, the BDL group showed liver injury, as evidenced by histological changes, and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by daily quercetin supplementation. Quercetin alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), interleukin-1 beta, connective tissue growth factor and collagen expression. The antifibrotic effect of quercetin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. Quercetin also attenuated BDL-induced oxidative stress, leukocyte accumulation, nuclear factor (NF)-κB activation and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of quercetin on MyD88 and TGF-β-activated kinase-1 critical for linking toll-like receptor (TLR) and NF-κB. Taken together, the hepatoprotective, anti-inflammatory and antifibrotic effects of quercetin seem to be multifactorial. The beneficial effects of daily quercetin supplementation are associated with antioxidative and anti-inflammatory potential as well as down-regulation of NF-κB and TGF-β/Smad signaling, probably via interference with TLR signaling.  相似文献   

6.
7.
8.
We investigated the protective role of aminoguanidine (AG) in rat liver injury induced by chronic biliary obstruction. Secondary biliary cirrhosis was induced by bile duct ligation for 14 days. Swiss albino rats were divided into three groups: Common bile duct ligated (CBDL) rats; Group A, CBDL rats treated with AG as Group B and simple laparotomy group known as the Sham group; Group C. Group B received 200 mg/kg of AG intraperitoneally daily throughout 14 days. The present data showed decreased gama glutamyl transferase (GGT), aspartate aminotransferase (AST), bilirubin and alanine aminotransferase (ALT) levels in the AG treated rats, when compared with CBDL rats (p < 0.05). In the AG treated rats, tissue levels of malondialdehyde (MDA) were significantly lower than that in CBDL rats (p < 0.001). Although the levels of glutathione (GSH) in AG treated rats were higher and myeloperoxidase (MPO) were lower than that in CBDL rats, the difference was not statistically significant (p > 0.05). The levels of interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) were significantly lower and although the levels of interleukin-6 (IL-6) were lower in AG treated rats than that in CBDL rats, the difference was not statistically significant. Administration of AG in the rats with biliary obstruction resulted in inhibition of ductular proliferation and portal inflammation. The present study demonstrates that intraperitoneal administration of AG in CBDL rats maintains antioxidant defenses, reduces liver oxidative and cytokine damage and ductular proliferation and portal inflammation. This effect of AG may be useful in the preservation of liver injury in cholestasis.  相似文献   

9.
Pulmonary fibrosis is a chronic and serious interstitial lung disease with little effective therapies currently. Our incomplete understanding of its pathogenesis remains obstacles in therapeutic developments. Sirtuin 6 (SIRT6) has been shown to mitigate multiple organic fibrosis. However, the involvement of SIRT6-mediated metabolic regulation in pulmonary fibrosis remains unclear. Here, we demonstrated that SIRT6 was predominantly expressed in alveolar epithelial cells in human lung tissues by using a single-cell sequencing database. We showed that SIRT6 protected against bleomycin-induced injury of alveolar epithelial cells in vitro and pulmonary fibrosis of mice in vivo. High-throughput sequencing revealed enriched lipid catabolism in Sirt6 overexpressed lung tissues. Mechanismly, SIRT6 ameliorates bleomycin-induced ectopic lipotoxicity by enhancing lipid degradation, thereby increasing the energy supply and reducing the levels of lipid peroxides. Furthermore, we found that peroxisome proliferator-activated receptor α (PPARα) was essential for SIRT6-mediated lipid catabolism, anti-inflammatory responses, and antifibrotic signaling. Our data suggest that targeting SIRT6-PPARα-mediated lipid catabolism could be a potential therapeutic strategy for diseases complicated with pulmonary fibrosis.  相似文献   

10.
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.  相似文献   

11.
Non-alcoholic fatty liver disease (NAFLD) is a complication of childhood obesity and an oxidative stress-related multisystem disease. A mitochondria-targeting hydrogen sulfide (H2S) donor AP39 has antioxidant property, while the mechanism underlying the function of AP39 on pediatric NAFLD remains undefined. Here, 3-week-old SD rats were received a high-fat diet (HFD) feeding and injected with AP39 (0.05 or 0.1 mg/kg/day) via the tail vein for up to 7 weeks. AP39 reduced weight gain of HFD rats and improved HFD-caused liver injury, as evidenced by reduced liver index, improved liver pathological damage, decreased NAFLD activity score, as well as low alanine transaminase (ALT) and aspartate transaminase (AST) activities. AP39 also reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) concentrations but increased high-density lipoprotein-cholesterol (HDL-C). Moreover, AP39 prevented reactive oxygen species (ROS) generation, reduced MDA content and increased glutathione (GSH) level and superoxide dismutase (SOD) activity. Furthermore, AP39 increased H2S level, protected mitochondrial DNA (mtDNA), reduced mitochondrial swelling, and restored mitochondrial membrane potential (MMP) alteration. Notably, AP39 diminished HIF-1α mRNA and protein level, possibly indicating the alleviation in mitochondrial damage. In short, AP39 protects against HFD-induced liver injury in young rats probably through attenuating lipid accumulation, oxidative stress and mitochondrial dysfunction.  相似文献   

12.
Chen G  Chen H  Wang C  Peng Y  Sun L  Liu H  Liu F 《PloS one》2012,7(3):e33626
Interstitial fibrosis is an inevitable outcome of all kinds of progressive chronic kidney disease (CKD). Emerging data indicate that rapamycin can ameliorate kidney fibrosis by reducing the interstitial infiltrates and accumulation of extra cellular matrix (ECM). However, the cellular mechanism that regulates those changes has not been well understood yet. In this study, we revealed the persistent activation of mammalian target of rapamycin (mTOR) signaling in the interstitial macrophages and myofibroblasts, but rarely in injured proximal epithelial cells, CD4+ T cells, neutrophils, or endothelial cells, during the development of kidney fibrosis. Administration of rapamycin to unilateral ureteral obstruction (UUO) mice significantly suppressed the immunoreactivity of mTOR signaling, which decreased the inflammatory responses and ECM accumulation in the obstructed kidneys. Isolated macrophages from rapamycin-treated obstructed kidneys presented less inflammatory activity than vehicle groups. In vitro study confirmed that rapamycin significantly inhibited the fibrogenic activation of cultured fibroblasts (NIH3T3 cells), which was induced by the stimulation of TGF-β(1). Further experiment revealed that rapamycin did not directly inhibit the fibrogenesis of HK2 cells with aristolochic acid treatment. Our findings clarified that rapamycin can ameliorate kidney fibrosis by blocking the mTOR signaling in interstitial macrophages and myofibroblasts.  相似文献   

13.
Pulmonary fibrosis (PF) is a chronic and ultimately fatal interstitial lung disease of various causes. The advent of nintedanib and pirfenidone provides treatment options for PF patients for the first time. However, the adverse effects of the two drugs such as gastrointestinal disorders and hepatic dysfunction often lead to treatment discontinuation. Gentiopicroside (GPS) is a natural secoiridoid glycoside from gentian species of medicinal plants, and has a variety of pharmacological activities, including hepatoprotective and cholagogic, anti-inflammatory, antinociceptive, and smooth muscle relaxing activities. The present study aimed to investigate the therapeutical effects of GPS on bleomycin (BLM)-induced PF in mice. Severe lung inflammation and fibrosis were observed in BLM-treated mice. GPS significantly ameliorated inflammatory and fibrotic responses in lungs of PF mice which were confirmed by histopathological examinations including light microscopy and transmission electron microscopy. Additionally, GPS significantly decreased the levels of inflammatory cytokines including TNF-α and IL-1β in bronchoalveolar lavage fluid and reduced the content of hydroxyproline in lungs of PF mice. Furthermore, GPS significantly downregulated the expression of TGF-β1 and CTGF in lungs of PF mice. In vitro, GPS inhibited epithelial-mesenchymal transition of A549?cells stimulated by TGF-β1, in a dose-dependent manner. Our findings suggest that GPS has the potential as an ideal drug candidate for PF, as it has both anti-inflammatory and anti-fibrotic effects. Alveolar epithelial cells and TGF-β1 may be the main target cells and molecule of GPS on BLM-induced PF, respectively.  相似文献   

14.
Renal fibrosis is a hallmark in CKD (chronic kidney disease) and is strongly correlated to the deterioration of renal function that is characterized by tubulointerstitial fibrosis, tubular atrophy, glomerulosclerosis and disruption of the normal architecture of the kidney. ALR (augmenter of liver regeneration) is a growth factor with biological functions similar to those of HGF (hepatocyte growth factor). In this study, our results indicate that endogenous ALR is involved in the pathological progression of renal fibrosis in UUO (unilateral ureteral obstruction) rat model. Moreover, we find that administration of rhALR (recombinant human ALR) significantly alleviates renal interstitial fibrosis and reduces renal-fibrosis-related proteins in UUO rats. Further investigation reveals that rhALR suppresses the up-regulated expression of TGF-β1 (transforming growth factor β1) induced by UUO operation in the obstructed kidney, and inhibits Smad2 and Smad3 phosphorylation activated by the UUO-induced injury in the animal model. Therefore we suggest that ALR is involved in the progression of renal fibrosis and administration of rhALR protects the kidney against renal fibrosis by inhibition of TGF-β/Smad activity.  相似文献   

15.
BackgroundAlveolar echinococcosis (AE) can cause severe liver fibrosis and could be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver fibrosis. In view of the therapeutic potential of adipose-derived stem cells (ADSCs), we investigated whether ADSCs transplantation has the ability to control or reverse fibrosis progression in the liver of Echinococcus multilocularis (E. multilocularis) infected mice.Methodology/Principal findingsC57BL/6 mice infected with E. multilocularis through portal vein inoculation were intravenously injected with ADSCs isolated from inguinal adipose tissues of 6–8 weeks old mice. Histopathological analysis including heamatoxylin & eosin staining as well as Masson’s trichrome staining, and Sirius red staining were performed to access the degree of liver fibrosis. Histopathological examination 30 days after ADSCs transplantation revealed that ADSCs significantly decreased the degree of liver fibrosis in E. multilocularis infected mice by inhibiting the expressions of α-SMA and type 1 collagen deposition. In addition, compared to the non-transplanted group, ADSCs transplantation reduced fibrotic areas in E. multilocularis infected mice. We also found that ADSCs transplantation significantly down-regulated TGF-β1 and TGF-βR expressions, while up-regulating Smad7 expression in the TGF-β/Smad signaling pathway.ConclusionsADSCs can alleviate Echinococcus multilocularis infection-induced liver fibrosis by modulating the activity level of the TGF-β/Smad7 signaling pathway and provide a potential therapeutic approach for E. multilocularis-induced fibrosis.  相似文献   

16.
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2).  相似文献   

17.
杨晶  倪佳良  高越颖 《菌物学报》2021,40(5):1160-1169
本研究探讨虫草素对α-萘异硫氰酸酯(ANIT)诱导胆汁淤积性肝损伤的改善作用及保护机制.首先建立ANIT诱导胆汁淤积性肝损伤模型,通过检测血生化指标、HE染色观察肝脏组织病理的情况评价虫草素的保肝作用,进一步通过Western blot和实时定量PCR技术分析胆汁酸合成、分解、转运以及炎症相关通路的变化.结果 显示,与...  相似文献   

18.
ObjectivePremature senescence is related to progerin and involves in endothelial dysfunction and liver diseases. Activating sirtuin 1 (SIRT1) ameliorates liver fibrosis. However, the mechanisms of premature senescence in defenestration of hepatic sinusoidal endothelial cells (HSECs) and how SIRT1 affects HSECs fenestrae remain elusive.MethodsWe employed the CCl4‐induced liver fibrogenesis rat models and cultured primary HSECs in vitro, administered with the SIRT1‐adenovirus vector, the activator of SIRT1 and knockdown NOX2. We measured the activity of senescence‐associated β‐galactosidase (SA‐β‐gal) in HSECs. Meanwhile, the protein expression of SIRT1, NOX2, progerin, Lamin A/C, Ac p53 K381 and total p53 was detected by Western blot, co‐immunoprecipitation and immunofluorescence.ResultsIn vivo, premature senescence was triggered by oxidative stress during CCl4‐induced HSECs defenestration and liver fibrogenesis, whereas overexpressing SIRT1 with adenovirus vector lessened premature senescence to relieve CCl4‐induced HSECs defenestration and liver fibrosis. In vitro, HSECs fenestrae disappeared, with emerging progerin‐associated premature senescence; these effects were aggravated by H2O2. Nevertheless, knockdown of NOX2, activation of SIRT1 with resveratrol and SIRT1‐adenovirus vector inhibited progerin‐associated premature senescence to maintain fenestrae through deacetylating p53. Furthermore, more Ac p53 K381 and progerin co‐localized with the abnormal accumulation of actin filament (F‐actin) in the nuclear envelope of H2O2‐treated HSECs; in contrast, these effects were rescued by overexpressing SIRT1.ConclusionSIRT1‐mediated deacetylation maintains HSECs fenestrae and attenuates liver fibrogenesis through inhibiting oxidative stress‐induced premature senescence.  相似文献   

19.
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.  相似文献   

20.
Hu YH  Lin CL  Huang YW  Liu PE  Hwang DF 《Amino acids》2008,35(2):469-473
The effect of dietary amino acid taurine on the liver function of chronic hepatitis patients was investigated. The 24 chronic hepatitis patients with 2-5 times over normal activities of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) were selected and equally divided into taurine treatment and control groups. In taurine treatment group, each patient took 2 g taurine 3 times a day for three months, and then stopped treatment for 1 month. Patients taking placebo without taurine for 4 months served as a control group. ALT and AST activities and levels of cholesterol, triglyceride and thiobarbituric acid relative substances of serum plasma in the taurine group were all decreased at the end of three month treatment. The study suggested that dietary amino acid taurine may ameliorate liver injury for chronic hepatitis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号