首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide binding domain and leucine-rich repeat-containing (NLR) family of proteins is known to activate innate immunity, and the inflammasome-associated NLRs are prime examples. In contrast, the concept that NLRs can inhibit innate immunity is still debated, and the impact of such inhibitory NLRs in diseases shaped by adaptive immune responses is entirely unexplored. This study demonstrates that, in contrast to other NLRs that activate immunity, NLRX1 plays a protective role in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. When compared with wild-type controls, Nlrx1−/− mice have significantly worsened clinical scores and heightened CNS tissue damage during EAE. NLRX1 does not alter the production of encephalitogenic T cells in the peripheral lymphatic tissue, but Nlrx1−/− mice are more susceptible to adoptively transferred myelin-reactive T cells. Analysis of the macrophage and microglial populations indicates that NLRX1 reduces activation during both active and passive EAE models. This work represents the first case of an NLR that attenuates microglia inflammatory activities and protects against a neurodegenerative disease model caused by autoreactive T cells.  相似文献   

2.
Nucleotide-binding site (NBS)–leucine-rich repeat (LRR) domain receptor (NLR) proteins play important roles in plant innate immunity by recognizing pathogen effectors. The Toll/interleukin-1 receptor (TIR)-NBS (TN) proteins belong to a subtype of the atypical NLRs, but their function in plant immunity is poorly understood. The well-characterized Arabidopsis thaliana typical coiled-coil (CC)-NBS-LRR (CNL) protein Resistance to Pseudomonas syringae 5 (RPS5) is activated after recognizing the Pseudomonas syringae type III effector AvrPphB. To explore whether the truncated TN proteins function in CNL-mediated immune signaling, we examined the interactions between the Arabidopsis TN proteins and RPS5, and found that TN13 and TN21 interacted with RPS5. However, only TN13, but not TN21, was involved in the resistance to P. syringae pv. tomato (Pto) strain DC3000 carrying avrPphB, encoding the cognate effector recognized by RPS5. Moreover, the regulation of Pto DC3000 avrPphB resistance by TN13 appeared to be specific, as loss of function of TN13 did not compromise resistance to Pto DC3000 hrcC or Pto DC3000 avrRpt2. In addition, we demonstrated that the CC and NBS domains of RPS5 play essential roles in the interaction between TN13 and RPS5. Taken together, our results uncover a direct functional link between TN13 and RPS5, suggesting that TN13 acts as a partner in modulating RPS5-activated immune signaling, which constitutes a previously unknown mechanism for TN-mediated regulation of plant immunity.  相似文献   

3.
The extensive natural variation of Arabidopsis thaliana ecotypes is being increasingly exploited as a source of variants of genes which control (agronomically) important traits. We have subjected 19 different Arabidopsis thaliana ecotypes to an analysis using the anplified fragment length polymorphism (AFLP) technique in order to estimate their genetic diversity. The genetic diversity was estimated applying the method of Nei and Li (1979) and a modified version of it and using 471 informative polymorphisms. The data obtained revealed that within this small set of ecotypes a group of three ecotypes and a further single ecotype exhibit considerable genetic diversity in comparison to the others. These ecotypes clustered at positions significantly separated from the bulk of the ecotypes in the generated similarity plots. The analysis demonstrated the usefulness of the AFLP method for determinating intraspecies genetic diversity as exemplified with Arabidopsis thaliana ecotypes. Results are discussed and compared with data obtained with other methods. Received: 18 June 1999 / Accepted: 28 July 1999  相似文献   

4.
5.
Innate immunity represents an important system with a variety of vital processes at the core of many diseases. In recent years, the central role of the Nod-like receptor (NLR) protein family became increasingly appreciated in innate immune responses. NLRs are classified as part of the signal transduction ATPases with numerous domains (STAND) clade within the AAA+ ATPase family. They typically feature an N-terminal effector domain, a central nucleotide-binding domain (NACHT) and a C-terminal ligand-binding region that is composed of several leucine-rich repeats (LRRs). NLRs are believed to initiate or regulate host defense pathways through formation of signaling platforms that subsequently trigger the activation of inflammatory caspases and NF-kB. Despite their fundamental role in orchestrating key pathways in innate immunity, their mode of action in molecular terms remains largely unknown. Here we present the first comprehensive sequence and structure modeling analysis of NLR proteins, revealing that NLRs possess a domain architecture similar to the apoptotic initiator protein Apaf-1. Apaf-1 performs its cellular function by the formation of a heptameric platform, dubbed apoptosome, ultimately triggering the controlled demise of the affected cell. The mechanism of apoptosome formation by Apaf-1 potentially offers insight into the activation mechanisms of NLR proteins. Multiple sequence alignment analysis and homology modeling revealed Apaf-1-like structural features in most members of the NLR family, suggesting a similar biochemical behaviour in catalytic activity and oligomerization. Evolutionary tree comparisons substantiate the conservation of characteristic functional regions within the NLR family and are in good agreement with domain distributions found in distinct NLRs. Importantly, the analysis of LRR domains reveals surprisingly low conservation levels among putative ligand-binding motifs. The same is true for the effector domains exhibiting distinct interfaces ensuring specific interactions with downstream target proteins. All together these factors suggest specific biological functions for individual NLRs.  相似文献   

6.
Plant intracellular immune receptors known as NLR (nucleotide-binding leucine-rich repeat) proteins confer immunity and cause cell death. Plant NLR proteins that directly or indirectly recognize pathogen effector proteins to initiate immune signalling are regarded as sensor NLRs. Some NLR protein families function downstream of sensor NLRs to transduce immune signalling and are known as helper NLRs. Recent breakthrough studies on plant NLR protein structures and biochemical functions greatly advanced our understanding of NLR biology. Comprehensive and detailed knowledge on NLR biology requires future efforts to solve more NLR protein structures and investigate the signalling events between sensor and helper NLRs, and downstream of helper NLRs.  相似文献   

7.
The innate immune system is composed of a wide repertoire of conserved pattern recognition receptors (PRRs) able to trigger inflammation and host defense mechanisms in response to endogenous or exogenous pathogenic insults. Among these, nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular sentinels of cytosolic sanctity capable of orchestrating innate immunity and inflammatory responses following the perception of noxious signals within the cell. In this review, we elaborate on recent advances in the signaling mechanisms of NLRs, operating within inflammasomes or through alternative inflammatory pathways, and discuss the spectrum of their effector functions in innate immunity. We describe the progressive characterization of each NLR with associated controversies and cutting edge discoveries.  相似文献   

8.
The degree of genetic diversity within and between 21 Arabidopsis thaliana (L.) Heynh ecotypes was estimated by AFLP analysis. Within seven of the 21 ecotypes, a low but significant level of polymorphism was detected, and for five of these ecotypes two or three distinct subgroups could be distinguished. As these ecotypes represent natural populations, this intra-ecotypic diversity reflects natural genetic variation and diversification within the ecotypes. The source of this diversity remains unclear but is intriguing in view of the predominantly self-fertilizing nature of Arabidopsis. Interrelationships between the different ecotypes were estimated after AFLP fingerprinting using two enzyme combinations (EcoRI/MseI and SacI/MseI) and a number of selective primer pairs. SacI recognition sites are less evenly distributed in the genome than EcoRI sites, and occur more frequently in coding sequences. In most cases, AFLP data from only one enzyme combination are used for genetic diversity analysis. Our results show that the use of two enzyme combinations can result in significantly different classifications of the ecotypes both in cluster and ordination analysis. This difference most probably reflects differences in the genomic distribution of the AFLP fragments generated, depending on the enzymes and selective primers used. For closely related varieties, as in the case of Arabidopsis ecotypes, this can preclude reliable classification.  相似文献   

9.
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors—plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death—a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.

Increasing evidence indicates that plant autoimmunity is in many cases the consequence of the inappropriate activation of cytoplasmic immune sensors.  相似文献   

10.
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.  相似文献   

11.
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.

Plant pan-NLRomes aim to fully capture intraspecific diversity of the highly variable NLR immune receptors, enabling systematic analyses of NLR genes and alleles and their roles in disease resistance.  相似文献   

12.
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.

A review of major research advances in plant immunity during the last three decades and individual characterized immune receptors, their immune signaling pathways, and interactions between immune systems  相似文献   

13.
The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.  相似文献   

14.
15.
16.
Nucleotide-binding domain–leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.  相似文献   

17.
In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.

Plant pathogens have evolved to counteract their hosts’ immune systems. A screen for pathogen effectors that suppress sensor NLR-mediated cell death in tobacco identifies effectors from a cyst nematode and an oomycete that suppress the NRC branch of the immune network to inhibit the immune-related cell death response.  相似文献   

18.
In plants, specific recognition of pathogen effector proteins by nucleotide-binding leucine-rich repeat (NLR) receptors leads to activation of immune responses. RPP1, an NLR from Arabidopsis thaliana, recognizes the effector ATR1, from the oomycete pathogen Hyaloperonospora arabidopsidis, by direct association via C-terminal leucine-rich repeats (LRRs). Two RPP1 alleles, RPP1-NdA and RPP1-WsB, have narrow and broad recognition spectra, respectively, with RPP1-NdA recognizing a subset of the ATR1 variants recognized by RPP1-WsB. In this work, we further characterized direct effector recognition through random mutagenesis of an unrecognized ATR1 allele, ATR1-Cala2, screening for gain-of-recognition phenotypes in a tobacco hypersensitive response assay. We identified ATR1 mutants that a) confirm surface-exposed residues contribute to recognition by RPP1, and b) are recognized by and activate the narrow-spectrum allele RPP1-NdA, but not RPP1-WsB, in co-immunoprecipitation and bacterial growth inhibition assays. Thus, RPP1 alleles have distinct recognition specificities, rather than simply different sensitivity to activation. Using chimeric RPP1 constructs, we showed that RPP1-NdA LRRs were sufficient for allele-specific recognition (association with ATR1), but insufficient for receptor activation in the form of HR. Additional inclusion of the RPP1-NdA ARC2 subdomain, from the central NB-ARC domain, was required for a full range of activation specificity. Thus, cooperation between recognition and activation domains seems to be essential for NLR function.  相似文献   

19.
Ultraviolet (UV) irradiation injures the epidermis, resulting in sunburn and inflammation. UV-irradiated keratinocytes secrete interleukin-1beta through a caspase-1-dependent mechanism. In seeking a link between UV-irradiation and caspase-1 activation, a prominent role for the NOD-like receptor (NLR) family of innate immunity proteins was discovered recently. NLRs activate caspases through the assembly of macromolecular complexes called 'inflammasomes.' Although the mechanism by which UV-irradiation activates inflammasomes remains obscure, these recent findings shed light on NLRs as intermediaries between cell injury and inflammation.  相似文献   

20.
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号