首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated a high-density genetic linkage map of soybean usingexpressed sequence tag (EST)-derived microsatellite markers.A total of 6920 primer pairs (10.9%) were designed to amplifysimple sequence repeats (SSRs) from 63 676 publicly availablenon-redundant soybean ESTs. The polymorphism of two parent plants,the Japanese cultivar ‘Misuzudaizu’ and the Chineseline ‘Moshidou Gong 503’, were examined using 10%polyacrylamide gel electrophoresis. Primer pairs showing polymorphismwere then used for genotyping 94 recombinant inbred lines (RILs)derived from a cross between the parents. In addition to previouslyreported markers, 680 EST-derived microsatellite markers wereselected and subjected to linkage analysis. As a result, 935marker loci were mapped successfully onto 20 linkage groups,which totaled 2700.3 cM in length; 693 loci were detected usingthe 668 EST-derived microsatellite markers developed in thisstudy, the other 242 loci were detected with 105 RFLP markers,136 genome-derived microsatellite markers, and one phenotypicmarker. We examined allelic variation among 23 soybean cultivars/linesand a wild soybean line using 668 mapped EST-derived microsatellitemarkers (corresponding to 686 marker loci), in order to determinethe transferability of the markers among soybean germplasms.A limited degree of macrosynteny was observed at the segmentallevel between the genomes of soybean and the model legume Lotusjaponicus, which suggests that considerable genome shufflingoccurred after separation of the species and during establishmentof the paleopolyploid soybean genome.  相似文献   

2.
EST derived SSR markers for comparative mapping in wheat and rice   总被引:18,自引:0,他引:18  
Structural and functional relationships between the genomes of hexaploid wheat (Triticum aestivum L.) (2n=6x=42) and rice (Oryza sativa L.) (2n=2x=24) were evaluated using linkage maps supplemented with simple sequence repeat (SSR) loci obtained from publicly available expressed sequence tags (ESTs). EST-SSR markers were developed using two main strategies to design primers for each gene: (1) primer design for multiple species based on supercluster analysis, and (2) species-specific primer design. Amplification was more consistent using the species-specific primer design for each gene. Forty-four percent of the primers designed specifically for wheat sequences were successful in amplifying DNA from both species. Existing genetic linkage maps were enhanced for the wheat and rice genomes using orthologous loci amplified with 58 EST-SSR markers obtained from both wheat and rice ESTs. The PCR-based anchor loci identified by these EST-SSR markers support previous patterns of conservation between wheat and rice genomes; however, there was a high frequency of interrupted colinearity. In addition, multiple loci amplified by these primers made the comparative analysis more difficult. Enhanced comparative maps of wheat and rice provide a useful tool for interpreting and transferring molecular, genetic, and breeding information between these two important species. These EST-SSR markers are particularly useful for constructing comparative framework maps for different species, because they amplify closely related genes to provide anchor points across species.Communicated by R. Hagemann  相似文献   

3.
绿豆基因组研究进展   总被引:1,自引:0,他引:1  
绿豆是亚洲国家重要的经济作物。绿豆基因组的研究工作已开展多年,至今已经发布了6张遗传连锁图谱,然而还未有一张图谱的连锁群数与绿豆(2n=2x=22,n=11)的染色体基数一致。近年来,豆科植物比较基因组学的研究成果,为绿豆遗传连锁图谱的发展提供了新的思路。通过将绿豆遗传连锁图与其他豆类连锁图比较发现,绿豆与小豆、豇豆、普通菜豆、大豆、藊豆以及豆科模式植物—蒺藜苜蓿的基因组间有不同程度的保守性,其中尤以绿豆与普通菜豆基因组间共线性水平高。本文分别从绿豆遗传连锁图谱构建、比较基因组作图以及抗豆象基因定位等方面进行了综述,以期为绿豆遗传研究工作者提供参考。  相似文献   

4.
ABSTRACT: BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species. RESULTS: We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype. CONCLUSIONS: This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.  相似文献   

5.
Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate species in biomedical research. To create new opportunities for genetic and genomic studies using rhesus monkeys, we constructed a genetic linkage map of the rhesus genome. This map consists of 241 microsatellite loci, all previously mapped in the human genome. These polymorphisms were genotyped in five pedigrees of rhesus monkeys totaling 865 animals. The resulting linkage map covers 2048 cM including all 20 rhesus autosomes, with average spacing between markers of 9.3 cM. Average heterozygosity among those markers is 0.73. This linkage map provides new comparative information concerning locus order and interlocus distances in humans and rhesus monkeys. The map will facilitate whole-genome linkage screens to locate quantitative trait loci (QTLs) that influence individual variation in phenotypic traits related to basic primate anatomy, physiology, and behavior, as well as QTLs relevant to risk factors for human disease.  相似文献   

6.
Microsatellite or single sequence repeat (SSR) markers have been commonly used in genetic research in many crop species, including common bean (Phaseolus vulgaris L.). A limited number of existing SSR markers have been designed from high-throughput sequencing of the genome, warranting the exploitation of new SSR markers from genomic regions. In this paper, we sequenced total DNA from the genotype Hong Yundou with a 454-FLX pyrosequencer and found numerous SSR loci. Based on these, a large number of SSR markers were developed and 90 genomic-SSR markers with clear bands were tested for mapping and diversity detection. The new SSR markers proved to be highly polymorphic for molecular polymorphism, with an average polymorphism information content value of 0.44 in 131 Chinese genotypes and breeding lines, effective for distinguishing Andean and Mesoamerican genotypes. In addition, we integrated 85 primers of the 90 polymorphism markers into the bean map using an F2 segregating population derived from Hong Yundou crossed with Jingdou. The distribution of SSR markers among 11 chromosomes was not random and tended to cluster on the linkage map, with 14 new markers mapped on chromosome Pv01, whereas only four loci were located on chromosome Pv04. Overall, these new markers have potential for genetic mapping, genetic diversity studies and map-based cloning in common bean.  相似文献   

7.
We report the localization by linkage analysis in the rat genome of 148 new markers derived from 128 distinct known gene sequences, ESTs, and anonymous sequences selected in GenBank database on the basis of the presence of a repeated element. The composite linkage map of the rat contributed by our group integrates mapping information on a total of 370 different known genes, ESTs, and anonymous mouse or human sequences, and provides a valuable tool for comparative genome analysis. 206 and 254 homologous loci were identified in the mouse and human genomes respectively. Our linkage map, which combines both anonymous markers and gene markers, should facilitate the advancement of genetic studies for a wide variety of rat models characterized for complete phenotypes. The comparative genome mapping should define genetic regions in human likely to be homologous to susceptibility loci identified in rat and provide useful information for the identification of new potential candidates for genetic disorders. Received: 2 January 1999 / Accepted: 7 March 1999  相似文献   

8.
Xu P  Wu X  Wang B  Liu Y  Ehlers JD  Close TJ  Roberts PA  Diop NN  Qin D  Hu T  Lu Z  Li G 《PloS one》2011,6(1):e15952
Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as 'long beans' or 'asparagus beans'. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level.  相似文献   

9.
Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.  相似文献   

10.
Effective comparative mapping inference utilizing developing gene maps of animal species requires the inclusion of anchored reference loci that are homologous to genes mapped in the more "gene-dense" mouse and human maps. Nominated anchor loci, termed comparative anchor tagged sequences (CATS), have been ordered in the mouse linkage map, but due to the dearth of common polymorphisms among human coding genes have not been well represented in human linkage maps. We present here an ordered framework map of 314 comparative anchor markers in humans based on mapping analysis in the Genebridge 4 panel of radiation hybrid cell lines, plus empirically optimized CATS PCR primers which detect these markers. The ordering of these homologous gene markers in human and mouse maps provides a framework for comparative gene mapping of representative mammalian species.  相似文献   

11.
普通菜豆是重要的食用豆类之一,在世界各大洲普遍种植。近年来,普通菜豆在遗传图谱构建、新标记开发与利用、抗性基因定位以及比较基因组学等方面取得了很大进展。遗传连锁图谱的构建是基因定位与克隆的基础,是遗传研究中的重要内容;利用分子连锁图谱鉴定、标记和定位抗病基因将在种质改良和分子标记辅助育种方面发挥重要作用。豆科植物比较基因组学的研究成果为菜豆遗传连锁图谱的发展提供了新的思路。本文从普通菜豆遗传连锁图谱的获得、普通菜豆与大豆同线性比较以及抗炭疽病基因定位等方面进行了综述,以期为普通菜豆遗传改良和抗病育种提供参考。 关键词:普通菜豆;遗传连锁图;同线性比较;抗菜豆炭疽病  相似文献   

12.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

13.
14.
We report construction of a genetic linkage map of the guppy genome using 790 single nucleotide polymorphism markers, integrated from six mapping crosses. The markers define 23 linkage groups (LGs), corresponding to the known haploid number of guppy chromosomes. The map, which spans a genetic length of 899 cM, includes 276 markers linked to expressed genes (expressed sequence tag), which have been used to derive broad syntenic relationships of guppy LGs with medaka chromosomes. This combined linkage map should facilitate the advancement of genetic studies for a wide variety of complex adaptive phenotypes relevant to natural and sexual selection in this species. We have used the linkage data to predict quantitative trait loci for a set of variable male traits including size and colour pattern. Contributing loci map to the sex LG for many of these traits.  相似文献   

15.

Background

Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.

Results

In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.

Conclusion

Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.  相似文献   

16.
We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorised users.  相似文献   

17.
Variation and divergence patterns of the multilocus genome markers in twelve Chironomus species belonging to the plumosus and piger sibling-species groups were examined by use of polymerase chain reaction with random primers (RAPD method). The chironomid species showed high levels of the RAPD markers polymorphism. The genetic distances (GD) were determined between the species within the group of closely related species, as well as between the species from different groups. The estimates obtained characterized the divergence levels between the sibling species (GD = 0.739) and morphologically distinct species (GD = 0.935). Comparison of the variation and divergence levels of the RAPD markers with those for the other genome markers, namely, the enzyme-coding genes and chromosomes (gene linkage groups) have demonstrated different divergence rates for different genome components during speciation of Chironimids.  相似文献   

18.
In this study, new single nucleotide polymorphism (SNP) markers were developed for common bean (Phaseolus vulgaris L.) and related Phaseolus species. The applied strategy presents new and interesting aspects, such as the choice of accessions used, which was aimed at capturing a large portion of the genetic diversity present in the common bean, with particular focus on wild and domesticated materials from Mesoamerica and the identification of loci for sequencing. Indeed, the primer pairs for 34 loci were designed with the main strategy being to search for single-copy orthologous genes among the legumes (for use in other legume species and comparative analyses). The 10 remaining loci were selected as being near to domestication quantitative trait loci or detected as putatively under selection during domestication in previous studies. To provide an efficient and inexpensive genotyping platform for geneticists and breeders, we used sequence data to develop 60 new SNP markers for KASPar assay genotyping. The same sample was also genotyped with SNP markers developed for common bean in other studies for the same assay. This allowed testing for systematic bias according to the criteria chosen to select the genotypes in which the genetic diversity is surveyed during SNP discovery. Finally, we show that most of the SNP markers worked well in a set of accessions of other species belonging to the Phaseolus genus. The genetic resources developed will be very useful not only for breeding, but also for biodiversity conservation management and evolutionary studies on legumes.  相似文献   

19.
20.
Catanopsis tribuloides is a climax tree species commonly distributed in evergreen forests and has been used to restore degraded areas in northern Thailand. To aid in study of genetic diversity of the species, microsatellite markers, which are specific to C. tribuloides, were developed using whole genome sequencing by next-generation sequencing technology. The primers for microsatellite were developed and screened for optimal annealing temperature by PCR assay. The loci primers specific with C. tribuloides, 13 polymorphic microsatellite primers were successfully developed. The results from genetic information analyzing showed the number of alleles presented were between 2 and 24. Accordingly, the expected and observed heterozygosity obtained were between 0.298 and 0.920 and 0.364 to 1.000, respectively. Null allele frequency was presented 0.000–0.199. Genetic information was generated 10 loci primers significantly deviated from Hardy–Weinberg Equilibrium. All 13 primer pairs of loci were not significant with linkage disequilibrium. A set of microsatellite markers in this study could be applied to gene flow, genetic structure and population genetic studies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号