首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Antimicrobial peptides are key components of the innate immune response in most multicellular organisms. These molecules are considered as one of the most innovative class of anti-infective agents that have been discovered over the last two decades, and therefore, as a source of inspiration for novel drug design. Insect cystine-rich antimicrobial peptides with the CS alpha beta scaffold (an alpha-helix linked to a beta-sheet by two disulfide bridges) represent particularly attractive templates for the development of systemic agents owing to their remarkable resistance to protease degradation. We have selected heliomicin, a broad spectrum antifungal CS alpha beta peptide from Lepidoptera as the starting point of a lead optimization program based on phylogenic exploration and fine tuned mutagenesis. We report here the characterization, biological activity, and 3D structure of heliomicin improved analogs, namely the peptides ARD1, ETD-135, and ETD-151. The ARD1 peptide was initially purified from the immune hemolymph of the caterpillars of Archeoprepona demophoon. Although it differs from heliomicin by only two residues, it was found to be more active against the human pathogens Aspergillus fumigatus and Candida albicans. The peptides ETD-135 and ETD-151 were engineered by site-directed mutagenesis of ARD1 in either cationic or hydrophobic regions. ETD-135 and ETD-151 demonstrated an improved antifungal activity over the native peptides, heliomicin and ARD1. A comparative analysis of the 3D structure of the four molecules highlighted the direct impact of the modification of the amphipathic properties on the molecule potency. In addition, it allowed to characterize an optimal organization of cationic and hydrophobic regions to achieve best antifungal activity.  相似文献   

3.
Drosomycin is the first strictly antifungal protein isolated from an insect (Drosophila melanogaster). The solution structure of this 44-residue protein has been reported previously. It involves a three-stranded beta-sheet and an alpha-helix, the protein global fold being maintained by four disulfide bridges. Rs-AFP2 is a plant antifungal protein exhibiting 41% sequence similarity with drosomycin. Mutational analysis of Rs-AFP2 showed the importance of some residues in the antifungal activity of the protein against the fungus target. In order to determine the structural features responsible for antifungal activity in both drosomycin and Rs-AFP2, we modeled the three-dimensional structure of Rs-AFP2, and of other antifungal proteins, using the solution structure of drosomycin as a template. Structure analysis of drosomycin and Rs-AFP2, and comparisons with the other modeled antifungal structures, revealed that the two proteins shared a hydrophobic cluster located at the protein surface in which a lysine residue is embedded. Based on these close structural similarities and the experimental data available for Rs-AFP2 mutants, an antifungal active site of the insect protein is proposed.  相似文献   

4.
5.
We report NMR assignments and solution structure of the 71-residue 30S ribosomal protein S28E from the archaean Pyrococcus horikoshii, target JR19 of the Northeast Structural Genomics Consortium. The structure, determined rapidly with the aid of automated backbone resonance assignment (AutoAssign) and automated structure determination (AutoStructure) software, is characterized by a four-stranded beta-sheet with a classic Greek-key topology and an oligonucleotide/oligosaccharide beta-barrel (OB) fold. The electrostatic surface of S28E exhibits positive and negative patches on opposite sides, the former constituting a putative binding site for RNA. The 13 C-terminal residues of the protein contain a consensus sequence motif constituting the signature of the S28E protein family. Surprisingly, this C-terminal segment is unstructured in solution.  相似文献   

6.
Small, cysteine-rich, highly stable antifungal proteins secreted by filamentous Ascomycetes have great potential for the development of novel antifungal strategies. However, their practical application is still limited due to their not fully clarified mode of action. The aim of this work was to provide a deep insight into the antifungal mechanism of Neosartorya fischeri antifungal protein (NFAP), a novel representative of this protein group. Within a short exposure time to NFAP, reduced cellular metabolism, apoptosis induction, changes in the actin distribution and chitin deposition at the hyphal tip were observed in NFAP-sensitive Aspergillus nidulans. NFAP did show neither a direct membrane disruptingeffect nor uptake by endocytosis. Investigation of A. nidulans signalling mutants revealed that NFAP activates the cAMP/protein kinase A pathway via G-protein signalling which leads to apoptosis and inhibition of polar growth. In contrast, NFAP does not have any influence on the cell wall integrity pathway, but an unknown cell wall integrity pathway-independent mitogen activated protein kinase A-activated target is assumed to be involved in the cell death induction. Taken together, it was concluded that NFAP shows similarities, but also differences in its mode of antifungal action compared to two most investigated NFAP-related proteins from Aspergillus giganteus and Penicillium chrysogenum.  相似文献   

7.
8.
9.
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an alpha-helix and a triple-stranded antiparallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized alphabeta motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure-activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP.  相似文献   

10.
The solution structure of termicin from hemocytes of the termite Pseudacanthotermes spiniger was determined by proton two-dimensional nuclear magnetic resonance spectroscopy and molecular modeling techniques. Termicin is a cysteine-rich antifungal peptide also exhibiting a weak antibacterial activity. The global fold of termicin consists of an alpha-helical segment (Phe4-Gln14) and a two-stranded (Phe19-Asp25 and Gln28-Phe33) antiparallel beta-sheet forming a "cysteine stabilized alphabeta motif" (CSalphabeta) also found in antibacterial and antifungal defensins from insects and from plants. Interestingly, termicin shares more structural similarities with the antibacterial insect defensins and with MGD-1, a mussel defensin, than with the insect antifungal defensins such as drosomycin and heliomicin. These structural comparisons suggest that global fold alone does not explain the difference between antifungals and antibacterials. The antifungal properties of termicin may be related to its marked hydrophobicity and its amphipatic structure as compared to the antibacterial defensins. [SWISS-PROT accession number: Termicin (P82321); PDB accession number: 1MM0.]  相似文献   

11.
12.
13.
Insects synthesize several types of hemolymph proteins in response to bacterial infection. The objective of this study was to characterize a 48,000 dalton hemolymph protein induced in larvae of Manduca sexta after injection of bacteria. The protein, isolated by cation exchange and gel filtration chromatography from hemolymph of larvae injected with Micrococcus lysodeikticus, was found to be a glycoprotein with pI = 8.4. The molecular weight, isoelectric point, amino acid composition, and NH2 terminal sequence of the protein are similar to bacteria-induced protein P4 from Hyalophora cecropia, and the M. sexta protein is also designated P4. The hemolymph concentration of M. sexta P4 (35 +/- 7 micrograms/ml in day 3 fifth instar larvae) increases 30- to 45-fold by 48 h after injection of bacteria, but it does not increase in response to injection of distilled water. Lower levels of induction occur after injection of peptidoglycan fragments, zymosan, and lipopolysaccharide. The properties of M. sexta P4 are very similar to those of a previously characterized M. sexta hemolymph protein known as postlarval protein, and antibodies against P4 bind to post-larval protein.  相似文献   

14.
水稻内生枯草芽孢杆菌G87抗菌蛋白的分离纯化及理化特性   总被引:4,自引:0,他引:4  
【目的】为得到枯草芽孢杆菌(Bacillus subtilis)G87的抗菌蛋白,明确其蛋白理化特性。【方法】采用硫酸铵沉淀和柱层析法进行分离纯化。【结果】获得单一抗菌活性蛋白(峰6-2-1),此抗菌蛋白分子量为50.8 kDa,等电点为5.90。经初步分析,抗菌蛋白不含脂,而含有少量(0.62%)糖;其蛋白部分具有脯氨酸或羟脯氨酸,但不含芳香族氨基酸。抗菌蛋白在高温(≥60℃)和较碱(pH8)环境下活性明显下降,但较抗紫外线、氯仿和胰蛋白酶、蛋白酶K、胃蛋白酶。【结论】枯草芽孢杆菌G87的抗菌蛋白为不含芳烃的糖蛋白,对高温和碱性条件敏感,而对蛋白酶类和紫外线等不敏感。  相似文献   

15.
16.
The solution structure of the phosphocarrier protein, HPr, from Bacillus subtilis has been determined by analysis of two-dimensional (2D) NMR spectra acquired for the unphosphorylated form of the protein. Inverse-detected 2D (1H-15N) heteronuclear multiple quantum correlation nuclear Overhauser effect (HMQC NOESY) and homonuclear Hartmann-Hahn (HOHAHA) spectra utilizing 15N assignments (reported here) as well as previously published 1H assignments were used to identify cross-peaks that are not resolved in 2D homonuclear 1H spectra. Distance constraints derived from NOESY cross-peaks, hydrogen-bonding patterns derived from 1H-2H exchange experiments, and dihedral angle constraints derived from analysis of coupling constants were used for structure calculations using the variable target function algorithm, DIANA. The calculated models were refined by dynamical simulated annealing using the program X-PLOR. The resulting family of structures has a mean backbone rmsd of 0.63 A (N, C alpha, C', O atoms), excluding the segments containing residues 45-59 and 84-88. The structure is comprised of a four-stranded antiparallel beta-sheet with two antiparallel alpha-helices on one side of the sheet. The active-site His 15 residue serves as the N-cap of alpha-helix A, with its N delta 1 atom pointed toward the solvent to accept the phosphoryl group during the phosphotransfer reaction with enzyme I. The existence of a hydrogen bond between the side-chain oxygen atom of Tyr 37 and the amide proton of Ala 56 is suggested, which may account for the observed stabilization of the region that includes the beta-turn comprised of residues 37-40. If the beta alpha beta beta alpha beta (alpha) folding topology of HPr is considered with the peptide chain polarity reversed, the protein fold is identical to that described for another group of beta alpha beta beta alpha beta proteins that include acylphosphatase and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins.  相似文献   

17.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen and a primary cause of nosocomial infection in humans. The rate of antibiotic resistance in P. aeruginosa is increasing worldwide leading to an unmet need for discovery of new chemical compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Initiation factor 1 from P. aeruginosa (Pa‐IF1) is the smallest of the three initiation factors that act to establish the 30S initiation complex during initiation of protein biosynthesis. Here we report the characterization and solution NMR structure of Pa‐IF1. Pa‐IF1 consists of a five‐stranded β‐sheet with an unusual extended β‐strand at the C‐terminus and one short α‐helix arranged in the sequential order β1‐β2‐β3‐α1‐β4‐β5. The structure adopts a typical β‐barrel fold and contains an oligomer‐binding motif. A cluster of basic residues (K39, R41, K42, K64, R66, R70, and R72) located on the surface of strands β4 and β5 near the short α‐helix may compose the binding interface with the 30S subunit.  相似文献   

18.
ApaG proteins are found in a wide variety of bacterial genomes but their function is as yet unknown. Some eukaryotic proteins involved in protein-protein interactions, such as the human polymerase delta-interacting protein (PDIP38) and the F Box A (FBA) proteins, contain ApaG homology domains. We have used NMR to determine the solution structure of ApaG protein from the plant pathogen Xanthomonas axonopodis pv. citri (ApaG(Xac)) with the aim to shed some light on its molecular function. ApaG(Xac) is characterized by seven antiparallel beta strands forming two beta sheets, one containing three strands (ABE) and the other four strands (GFCC'). Relaxation measurements indicate that the protein has a quite rigid structure. In spite of the presence of a putative GXGXXG pyrophosphate binding motif ApaG(Xac) does not bind ATP or GTP, in vitro. On the other hand, ApaG(Xac) adopts a fibronectin type III (Fn3) fold, which is consistent with the hypothesis that it is involved in mediating protein-protein interactions. The fact that the proteins of ApaG family do not display significant sequence similarity with the Fn3 domains found in other eukaryotic or bacterial proteins suggests that Fn3 domain may have arisen earlier in evolution than previously estimated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号