首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Immunisation of BALB/c mice with seven heat-treated Norwegian clinical isolates of Streptococcus pneumoniae of different serotypes elicited mainly monoclonal antibodies (mAbs) to pneumococcal surface protein A (PspA). It was remarkable that the fusions resulted only in a few mAbs directed against other protein antigens. Dot blot analysis with 16 mAbs using clinical isolates representing 23 different capsular types and the uncapsulated reference strain R36A showed that some of the mAbs bound to PspA epitopes expressed by a low number of strains whereas others bound to broadly distributed epitopes. On the basis of their reactivities, seven of these mAbs could be divided into two groups recognising different subsets of pneumococci. The three mAbs in the narrow reacting group bound to epitopes found in 21-25% of the strains whereas the four mAbs in the broad reacting group detected more than 57% of the analysed strains. The epitopes for these seven antibodies were surface exposed on live exponential phase grown pneumococci as shown by flow cytometry. The finding that a combination of mAb 180,C-1 (IgG2a) from the first group and mAb 170,E-11 (IgG2a) from the second group detected 94% of the examined strains is interesting because PspA has been reported by others to be a serological highly variable protein.  相似文献   

2.

Background

The protection against pneumococcal infections provided by currently available pneumococcal polysaccharide conjugate vaccines are restricted to the limited number of the serotypes included in the vaccine. In the present study, we evaluated the distribution of the pneumococcal capsular type and surface protein A (PspA) family of pneumococcal isolates from upper respiratory tract infections in Japan.

Methods

A total of 251 S. pneumoniae isolates from patients seeking treatment for upper respiratory tract infections were characterized for PspA family, antibiotic resistance and capsular type.

Results

Among the 251 pneumococci studied, the majority (49.4%) was identified as belonging to PspA family 2, while most of the remaining isolates (44.6%) belonged to family 1. There were no significant differences between the distributions of PspA1 versus PspA2 isolates based on the age or gender of the patient, source of the isolates or the isolates’ susceptibilities to penicillin G. In contrast, the frequency of the mefA gene presence and of serotypes 15B and 19F were statistically more common among PspA2 strains.

Conclusion

The vast majority of pneumococci isolated from the middle ear fluids, nasal discharges/sinus aspirates or pharyngeal secretions represented PspA families 1 and 2. Capsular serotypes were generally not exclusively associated with certain PspA families, although some capsular types showed a much higher proportion of either PspA1 or PspA2. A PspA-containing vaccine would potentially provide high coverage against pneumococcal infectious diseases because it would be cross-protective versus invasive disease with the majority of pneumococci infecting children and adults.  相似文献   

3.
Streptococcus pneumoniae is the agent responsible for infections such as pneumonia, otitis media, and meningitis. Among virulence factors, the Pneumococcal surface protein A (PspA) has been shown to be immunogenic and protective in mice, and is thus a good vaccine candidate. PspA has been classified into 6 clades and 3 families. Initially, pspA fragments, clades 1 and 3, were cloned into the pAE-6His expression vector. Proteins were expressed in Escherichia coli BL21(DE3) and purified by affinity and anion exchange chromatographies, with a yield of 11 mg/l of culture. Due to plasmid instability in E. coli, another construct using pspA1 was obtained based on pET-37b(+), which was shown to be stable in E. coli and increased the yield approximately 3-fold. Our results show good conditions for scale-up. Sera from immunized mice recognized PspA in total extracts of S. pneumoniae strains: anti-rPspA1p sera recognized native PspA clades 1 (+++), 2 (++) and 4 (+) and anti-rPspA3p sera recognized PspA clades 1 (+), 2 (+), 3 (+++) and 4 (+). The cross-reactivity pattern obtained confirms the notion that proteins from both families should be included for development of a broad-coverage vaccine; lower-cross reactivity between rPspAs of family 2 indicates that it may be necessary to include 2 proteins from this family.  相似文献   

4.
Several proteins, in addition to the polysaccharide capsule, have recently been implicated in the full virulence of the Streptococcus pneumoniae bacterial pathogen. One of these novel virulence factors of S. pneumoniae is pneumococcal surface protein A (PspA). The N-terminal, cell surface exposed, and functional part of PspA is essential for full pneumococcal virulence, as evidenced by the fact that antibodies raised against this part of the protein are protective against pneumococcal infections. PspA has recently been implicated in anti-complementary function as it reduces complement-mediated clearance and phagocytosis of pneumococci. Several recombinant N-terminal fragments of PspA from different strains of pneumococci, Rx1, BG9739, BG6380, EF3296, and EF5668, were analyzed using circular dichroism, analytical ultracentrifugation sedimentation velocity and equilibrium methods, and sequence homology. Uniformly, all strains of PspA molecules studied have a high alpha-helical secondary structure content and they adopt predominantly a coiled-coil structure with an elongated, likely rod-like shape. No beta-sheet structures were detected for any of the PspA molecules analyzed. All PspAs were found to be monomeric in solution with the exception of the BG9739 strain which had the propensity to partially aggregate but only into a tetrameric form. These structural properties were correlated with the functional, anti-complementary properties of PspA molecules based on the polar distribution of highly charged termini of its coiled-coil domain. The recombinant Rx1 PspA is currently under consideration for pneumococcal vaccine development.  相似文献   

5.
Streptococcus pneumoniae is the main causative agent of acute otitis media in children. Serotype-based vaccines have provided some protection against otitis media, but not as much as anticipated, demonstrating the need for alternative vaccine options. Pneumococcal otitis media isolates were obtained from children 5 years old or younger from hospitals around Mississippi in the prevaccine era (1999-2000). These isolates were compared by capsular typing, pneumococcal surface protein A (PspA) family typing, antibiotic susceptibility, and DNA fingerprinting. Our study shows that there is great genetic variability among pneumococcal clinical isolates of otitis media, except with regard to PspA. Therefore, efforts focused on the development of a PspA-based pneumococcal vaccine would be well placed.  相似文献   

6.
Genome-derived neisserial Ag (GNA) 1870 is a meningococcal vaccine candidate that can be subdivided into three variants based on amino acid sequence variability. Variant group 1 accounts for approximately 60% of disease-producing group B isolates. The Ag went unrecognized until its discovery by genome mining because it is expressed in low copy number by most strains. To investigate the relationship between Ab binding to GNA1870 and complement-mediated protective functions, we prepared a panel of four murine IgG mAbs against rGNA1870 (variant 1) and evaluated their activity against nine genetically diverse encapsulated Neisseria meningitidis strains expressing subvariants of variant 1 GNA1870. Based on flow cytometry with live encapsulated bacteria, surface accessibility of the epitopes recognized by the mAbs appeared to be low in most strains. Yet mAb concentrations <1 to 5 micro g/ml were sufficient to elicit bactericidal activity with human complement and/or activate C3b deposition on the bacterial surface. Certain combinations of mAbs were highly bactericidal against strains that were resistant to bactericidal activity of the respective individual mAbs. The mAbs conferred passive protection against bacteremia in infant rats challenged by strains resistant to bacteriolysis, and the protective activity paralleled the ability of the mAb to activate C3b deposition. Thus, despite low GNA1870 surface exposure, anti-GNA1870 variant 1 Abs are bactericidal and/or elicit C3b deposition and confer protection against bacteremia caused by encapsulated N. meningitidis strains expressing GNA1870 subvariant 1 proteins. The data support GNA1870 as a promising vaccine candidate for prevention of meningococcal group B disease caused by GNA1870 variant 1 strains.  相似文献   

7.
Despite considerable interest in the isolation of mAbs with potent neutralization activity against primary HIV-1 isolates, both for identifying useful targets for vaccine development and for the development of therapeutically useful reagents against HIV-1 infection, a relatively limited number of such reagents have been isolated to date. Human mAbs (hu-mAbs) are preferable to rodent mAbs for treatment of humans, but isolation of hu-mAbs from HIV-infected subjects by standard methods of EBV transformation of B cells or phage display of Ig libraries is inefficient and limited by the inability to control or define the original immunogen. An alternative approach for the isolation of hu-mAbs has been provided by the development of transgenic mice that produce fully hu-mAbs. In this report, we show that immunizing the XenoMouse G2 strain with native recombinant gp120 derived from HIV(SF162) resulted in robust humoral Ab responses against gp120 and allowed the efficient isolation of hybridomas producing specific hu-mAbs directed against multiple regions and epitopes of gp120. hu-mAbs possessing strong neutralizing activity against the autologous HIV(SF162) strain were obtained. The epitopes recognized were located in three previously described neutralization domains, the V2-, V3- and CD4-binding domains, and in a novel neutralization domain, the highly variable C-terminal region of the V1 loop. This is the first report of neutralizing mAbs directed at targets in the V1 region. Furthermore, the V2 and V3 epitopes recognized by neutralizing hu-mAbs were distinct from those of previously described human and rodent mAbs and included an epitope requiring a full length V3 loop peptide for effective presentation. These results further our understanding of neutralization targets for primary, R5 HIV-1 viruses and demonstrate the utility of the XenoMouse system for identifying new and interesting epitopes on HIV-1.  相似文献   

8.
Abstract Two monoclonal antibodies (mAbs) were produced against a serogroup B Neisseria meningitidis strain. These mAbs recognized two epitopes in the class 5 outer membrane proteins (OMP), designated P5.7 and P5.Bm, and were able to kill the homologous strain through complement activation. Both epitopes were surface exposed and 68% of group B meningococcal clinical isolates had one or both epitopes present in their class 5 OMP. Antibodies to one or both epitopes were demonstrated in 17 patients with meningococcal meningitis using an ELISA inhibition assay. Of the 17 paired sera, 41% and 29% of the acute-phase sera had antibodies to the P5.7 and P5.Bm epitopes, respectively. Immunoglobulin G to P5.Bm were found in all 17 convalescent-phase sera while specific antibodies against P5.7 were only found in 6 of these sera. These results demonstrate the potential importance of the P5.Bm and P5.7 epitopes on the class 5 OMP as candidates for vaccine composition.  相似文献   

9.
Abstract The outer membrane proteins of several prominent bacterial pathogens demonstrate substantial variation in their surface antigenic epitopes. To determine if this was also true for Pseudomonas aeruginosa outer membraine protein OprF, gene sequencing of a serotype 5 isolate was performed to permit comparison with the published serotype 12 oprF gene sequence. Only 16 nucleotide substitutions in the 1053 nucleotide coding region were observed; none of these changed the amino acid sequence. A panel of 10 monoclonal antibodies (mAbs) reacted with each of 46 P. aeruginosa strains representing all 17 serotype strains, 12 clinical isolates, 15 environmental isolates and 2 laboratory isolates. Between two and eight of these mAbs also reacted with proteins from representatives of the rRNA homology group I of the Pseudomonadaceae . Nine of the ten mAbs recognized surface antigenic epitopes as determined by indirect immunofluorescence techniques and their ability to opsonize P. aeuroginosa for phagocytosis. These epitopes were partially masked by lipopolysacharide side chains as revealed using a side chain-deficient mutant. It is concluded that OprF is a highly conserved protein with several conserved surface antigenic epitopes.  相似文献   

10.

Background

The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored.

Methodology/Principal Findings

We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer.

Conclusions/Significance

Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level.  相似文献   

11.
Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.  相似文献   

12.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   

13.
Vaccination against human immunodeficiency virus type 1 (HIV-1) requires an immunogen which will elicit a protective immunity against viruses that show a high degree of genetic polymorphism. Therefore, the identification of neutralizing epitopes which are shared by many strains would be useful. In previous studies, we established a human monoclonal antibody (2F5) that neutralizes a variety of laboratory strains and clinical isolates of HIV-1. In the present report, we define the amino acid sequence Glu-Leu-Asp-Lys-Trp-Ala (ELDKWA) on the ectodomain of gp41 as the epitope recognized by this antibody. The sequence was found to be conserved in 72% of otherwise highly variable HIV-1 isolates. Escape mutants were not detected in cells infected with HIV-1 isolates MN and RF in the presence of antibody 2F5. Since sequence variability of neutralizing epitopes is considered to be a major obstacle to HIV-1 vaccine development, the conserved B-cell epitope described here is a promising candidate for inclusion in a vaccine against AIDS.  相似文献   

14.
Conjugate vaccines are being widely used since their introduction. Nowadays the interest in these vaccines is still growing and new antigens and conjugate chemistry are being studied and developed. Pneumococcal surface protein A (PspA) is one of the most studied pneumococcal antigens and is an important vaccine candidate. One approach to broaden the conjugate vaccine coverage could be the conjugation of the polysaccharide to a pneumococcal protein such as PspA. Previous results have shown that conjugated recombinant fragment of PspA (rPspA) not only maintained but also in some conjugates improved the induction of protective antibodies raised against the protein carrier. We describe here a characterization study to identify the domains of Streptococcus pneumoniae recombinant PspA (rPspA), from family 1 clade 1 and family 2 clade 3, involved in the conjugation with serotype 6B capsular polysaccharide.  相似文献   

15.
Bordetella pertussis is re-emerging in several countries with a high vaccine uptake. Analysis of clinical isolates revealed antigenic divergence between vaccine strains and circulating strains with respect to P.69 pertactin. Polymorphisms in P.69 pertactin are mainly limited to regions comprised of amino acid repeats, designated region 1 and region 2. Region 1 flanks the RGD motif involved in adherence. Although antibodies against P.69 pertactin are implicated in protective immunity, little is known about the structure and location of its epitopes. Previously we described the localization of mainly linear epitopes of both human sera and mouse monoclonal antibodies (mAbs). To study the location of conformational epitopes and to investigate the effect of variation in P.69 pertactin on vaccine efficacy, we cloned, expressed, and purified 3 naturally occurring P.69 pertactin variants, 3 mutants in which the variable regions are missing, 3 N-terminal mutants and 1 C-terminal deletion mutant. Here, we describe the procedure to clone, express, and purify up to 0.1mg P.69 pertactin and its derivatives per 1 ml Escherichia coli culture.  相似文献   

16.
The P2 outer membrane protein of Haemophilus influenzae belongs to a class of apparently ubiquitous proteins in Gram-negative bacteria that function as porins. Murine hybridomas raised to the P2 protein and synthetic peptides were used to investigate the structural and antigenic relationships among P2 proteins of encapsulated and non-encapsulated H. influenzae. Three monoclonal antibodies (mAbs), P2-17, P2-18 and P2-19, recognizing epitopes on the P2 protein, as shown by Western immunoblotting of outer membrane preparations, and purified and recombinant P2 proteins are described. The epitopes reactive with the mAbs were widely distributed among H. influenzae strains since 70-100% of strains of encapsulated and non-encapsulated isolates collected worldwide were recognized by individual mAbs. None of the mAbs reacted with H. parainfluenzae or other bacterial species. The peptide composition of P2 epitopes was determined by analysis of mAb reactivity with a series of overlapping synthetic peptides that covered the amino acid sequences of H. influenzae type b. The domains recognized by these mAbs were completely distinct. mAb P2-18, reactive with an epitope conserved among all H. influenzae P2 porin molecules which were screened, recognized a peptide corresponding to the N-terminal segment (residues 1-14). The P2-17- and P2-19-specific epitopes were located between residues 28 and 55, and 101 and 129, respectively. None of the epitopes were exposed on the cell surface since no mAbs bound to intact live bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.  相似文献   

18.
Warthin's tumours provide a unique opportunity to distinguish and compare monoclonal antibodies (mAbs) to the epithelial mucin, MUC1. In this study, we have applied the range of anti-MUC1 antibodies submitted to the ISOBM TD-4 Workshop for this purpose. mAbs and lectins against MUC1-associated carbohydrate epitopes were also included. Among 39 mAbs to peptide epitopes of MUC1, eight distinct types of staining patterns towards the two epithelial cell layers of Warthin's tumours could be observed. A majority of 27 mAbs reacted preferentially (17) or exclusively (10) with columnar cells, whereas 10 mAbs favoured basal cells (1 of them almost exclusively). The observed staining patterns revealed no correlation with the epitopes. However, after carbohydrate-specific periodate oxidation, 33 of the mAbs stained columnar and basal cells equally well, indicating that epitope masking by glycan side chains was in most cases responsible for the different staining patterns. The results demonstrate the profound impact of glycosylation on immunohistochemistry. Among carbohydrate epitopes, sialyl-TF, sialyl-Le(x), sialyl-dimeric Le(x) and Tn were expressed on both columnar and basal cells (the s-TF3 isomer on columnar cells only). The carcinoma-associated Thomsen-Friedenreich epitope was absent.  相似文献   

19.
The high cost of the available pneumococcal conjugated vaccines has been an obstacle in implementing vaccination programs for children in developing countries. As an alternative, Malley et al. proposed a vaccine consisting of inactivated whole-cells of unencapsulated S. pneumoniae, which provides serotype-independent protection and involves lower production costs. Although the pneumococcus has been extensively studied, little research has focused on its large-scale culture, thus implying a lack of knowledge of process parameters, which in turn are essential for its successful industrial production. The strain Rx1Al eryR was originally cultured in Todd–Hewitt medium (THY), which is normally used for pneumococcus isolation, but is unsuitable for human vaccine preparations. The purposes of this study were to compare the strains Rx1Al eryR and kanR, develop a new medium, and generate new data parameters for scaling-up the process. In static flasks, cell densities were higher for eryR than kanR. In contrast, the optical density (OD) of the former decreased immediately after reaching the stationary phase, and the OD of the latter remained stable. The strain Rx1Al kanR was cultivated in bioreactors with medium based on either acid-hydrolyzed casein (AHC) or enzymatically hydrolyzed soybean meal (EHS). Biomass production in EHS was 2.5 times higher than in AHC, and about ten times higher than in THY. The process developed for growing the strain Rx1Al kanR in pH-controlled bioreactors was shown to be satisfactory to this fastidious bacterium. The new culture conditions using this animal-free medium may allow the production of the pneumococcal whole-cell vaccine.  相似文献   

20.
Abstract Seven murine monoclonal antibodies (mAbs) against serotype 1 of Actinobacillus (Haemophilus) pleuropneumoniae (reference strain Shope 4074) were produced and characterized. All hybridomas secreting mAbs were reactive with whole-cell antigens from reference strains of serotypes 1, 9 and 11, except for mAb 5D6 that failed to recognize serotype 9. They did not react with other taxonomically related Gram-negative organisms tested. The predominant isotype was immunoglobulin (Ig) M, although IgG2a, IgG2b, and IgG3 were also obtained. The epitopes identified by these mAbs were resistant to proteinase K treatment and boiling in the presence of sodium dodecyl sulfate and reducing conditions; however, they were sensitive to sodium periodate treatment. Enhanced chemiluminescence-immunodetection assay showed that mAbs could be divided in two groups according to the patterns of immunoreaction observed. Group I (mAbs 3E10, 4B7, 9H5 and 11C3) recognized a ladder-like banding profile consistent with the O antigen of lipopolysaccharide (LPS) from smooth strains. Group II (mAbs 3B10 and 9H1) recognized a long smear of high molecular weight which ranged from 60 to 200 kDa. The mAbs were tested against 96 field isolates belonging to serotypes 1, 5, 9, 11 and 12, which had previously been classified by a combination of serological techniques based on polyclonal rabbit sera (counterimmunoelectrophoresis, immunodiffusion and coagglutination). The panel of mAbs identified all isolates of serotypes 9 and 11, but only 66% of those belonging to serotype 1. This may suggest the existence of antigenic heterogeneity among isolates of A. pleuropneumoniae serotype 1. These mAbs reacted with epitopes common to serotypes 1, 9 and 11 of Actinobacillus pleuropneumoniae which were located on the O antigen of LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号