首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.  相似文献   

2.
PCR-based analysis of Bacteroidales 16S rRNA genes has emerged as a promising tool to identify sources of fecal water pollution. In this study, three TaqMan real-time PCR assays (BacGeneral, BacHuman, and BacBovine) were developed and evaluated for their ability to quantitatively detect general (total), human-specific, and bovine-specific Bacteroidales 16S rRNA genetic markers. The detection sensitivity was determined to be 6.5 copies of 16S rRNA gene for the BacGeneral and BacHuman assays and 10 copies for the BacBovine assay. The assays were capable of detecting approximately one to two cells per PCR. When tested with 70 fecal samples from various sources (human, cattle, pig, deer, dog, cat, goose, gull, horse, and raccoon), the three assays positively identified the target markers in all samples without any false-negative results. The BacHuman and BacBovine assays exhibited false-positive reactions with non-target samples in a few cases. However, the level of the false-positive reactions was about 50 times smaller than that of the true-positive ones, and therefore, these cross-reactions were unlikely to cause misidentifications of the fecal pollution sources. Microbial source-tracking capability was tested at two freshwater streams of which water quality was influenced by human and cattle feces, respectively. The assays accurately detected the presence of the corresponding host-specific markers upon fecal pollution and the persistence of the markers in downstream areas. The assays are expected to reliably determine human and bovine fecal pollution sources in environmental water samples.  相似文献   

3.
Methods focused on members of the genus Bacteroides have been increasingly utilized in microbial source-tracking studies for identifying and quantifying sources of nonpoint fecal contamination. We present results using standard and real-time PCR to show cross-amplification of Bacteroides 16S rRNA gene molecular assays targeting human fecal pollution with fecal DNA from freshwater fish species. All except one of the presumptively human-specific assays amplified fecal DNA from at least one fish species, and one real-time PCR assay amplified DNA from all fish species tested. Sequencing of PCR amplicons generated from fish fecal DNA using primers from the real-time assay revealed no mismatches to the human-specific probe sequences, but the nucleotide sequences of clones from fish fecal samples differed markedly from those of human feces, suggesting that the fish-related bacteria may be different strains. Our results strongly demonstrate the potential for cross-amplification of human-specific PCR assays with fish feces, and may call into question the results of studies in which these Bacteroides- specific molecular markers are used to quantify human fecal contamination in waters where fish contribute to fecal inputs.  相似文献   

4.
In this study, we evaluated the specificity, distribution, and sensitivity of Prevotella strain-based (PF163 and PigBac1) and methanogen-based (P23-2) PCR assays proposed to detect swine fecal pollution in environmental waters. The assays were tested against 222 fecal DNA extracts derived from target and nontarget animal hosts and against 34 groundwater and 15 surface water samples from five different sites. We also investigated the phylogenetic diversity of 1,340 “Bacteroidales” 16S rRNA gene sequences derived from swine feces, swine waste lagoons, swine manure pits, and waters adjacent to swine operations. Most swine fecal samples were positive for the host-specific Prevotella-based PCR assays (80 to 87%), while fewer were positive with the methanogen-targeted PCR assay (53%). Similarly, the Prevotella markers were detected more frequently than the methanogen-targeted assay markers in waters historically impacted with swine fecal contamination. However, the PF163 PCR assay cross-reacted with 23% of nontarget fecal DNA extracts, although Bayesian statistics suggested that it yielded the highest probability of detecting pig fecal contamination in a given water sample. Phylogenetic analyses revealed previously unknown swine-associated clades comprised of clones from geographically diverse swine sources and from water samples adjacent to swine operations that are not targeted by the Prevotella assays. While deeper sequencing coverage might be necessary to better understand the molecular diversity of fecal Bacteroidales species, results of sequence analyses supported the presence of swine fecal pollution in the studied watersheds. Overall, due to nontarget cross amplification and poor geographic stability of currently available host-specific PCR assays, development of additional assays is necessary to accurately detect sources of swine fecal pollution.The size of swine farming operations has increased significantly during the last few decades as a result of the high demand for pork products. In fact, pork is now considered the most popular meat worldwide (15). In the United States, the number of large confined swine animal units increased by 3 orders of magnitude from 1982 to 1997 (18), making the swine industry among the top three producers of domesticated animal feces. A direct consequence of this trend is the increase in swine fecal waste, which in turn has raised environmental concerns. When introduced to water, swine fecal waste can present a risk to human health because this waste can harbor a variety of human pathogens (5, 13, 15, 21, 36). The diversity and relatively high frequency of human pathogens in swine feces make swine important reservoirs of zoonotic pathogens. Moreover, the marked increase in the number of large operations has resulted in increased manure production and application in small geographic areas, creating an imbalance between the assimilative capacity of manure-treated farmland and the amount of manure nutrients produced on each farm. This imbalance is evidenced by the 20% increase (from 1982 to 1997) in nitrogen and phosphorus produced in swine operations, thus potentially contributing to the detrimental eutrophication of aquatic ecosystems (18). Swine manure spills and leaks are commonplace in the top hog production states, such as Iowa and North Carolina, due to failure or overflow of manure storage, uncontrolled runoff from open feedlots, improper manure application on cropland, deliberate pumping of manure onto the ground, and intentional breaches in storage lagoons (28, 37).Recently, swine-associated PCR-based methods targeting members of the “Bacteroidales” order (i.e., Prevotella species) and methanogen populations (12, 29, 35) have been proposed to discriminate swine fecal pollution events from other potential fecal contributions (i.e., human, bovine, and wildlife) to environmental waters. Nevertheless, the value of these assays in reliably detecting fecal pollution sources in watershed-based studies has not been thoroughly investigated. The main goals of this study were to determine host specificity, frequency of detection, and detection limits of currently available swine-associated PCR-based, microbial source tracking assays. To achieve these objectives, assays were tested against swine and nontarget fecal samples, samples from swine manure pits and swine waste lagoons, and water samples presumed to be impacted by swine fecal sources. Furthermore, we investigated the phylogenetic diversity of Bacteroidales 16S rRNA gene sequences derived from some of the aforementioned samples to resolve the level of specificity, relative abundance, and environmental occurrence of Bacteroidales-specific 16S rRNA gene sequences.  相似文献   

5.
Avian feces contaminate waterways but contribute fewer human pathogens than human sources. Rapid identification and quantification of avian contamination would therefore be useful to prevent overestimation of human health risk. We used subtractive hybridization of PCR-amplified gull fecal 16S RNA genes to identify avian-specific fecal rRNA gene sequences. The subtracters were rRNA genes amplified from human, dog, cat, cow, and pig feces. Recovered sequences were related to Enterobacteriaceae (47%), Helicobacter (26%), Catellicoccus (11%), Fusobacterium (11%), and Campylobacter (5%). Three PCR assays, designated GFB, GFC, and GFD, were based on recovered sequence fragments. Quantitative PCR assays for GFC and GFD were developed using SYBR green. GFC detected down to 0.1 mg gull feces/100 ml (corresponding to 2 gull enterococci most probable number [MPN]/100 ml). GFD detected down to 0.1 mg chicken feces/100 ml (corresponding to 13 Escherichia coli MPN/100 ml). GFB and GFC were 97% and 94% specific to gulls, respectively. GFC cross-reacted with 35% of sheep samples but occurred at about 100,000 times lower concentrations in sheep. GFD was 100% avian specific and occurred in gulls, geese, chickens, and ducks. In the United States, Canada, and New Zealand, the three markers differed in their geographic distributions but were found across the range tested. These assays detected four important bird groups contributing to fecal contamination of waterways: gulls, geese, ducks, and chickens. Marker distributions across North America and in New Zealand suggest that they will have broad applicability in other parts of the world as well.  相似文献   

6.
In order to identify the origin of the fecal contamination observed in French estuaries, two library-independent microbial source tracking (MST) methods were selected: (i) Bacteroidales host-specific 16S rRNA gene markers and (ii) F-specific RNA bacteriophage genotyping. The specificity of the Bacteroidales markers was evaluated on human and animal (bovine, pig, sheep, and bird) feces. Two human-specific markers (HF183 and HF134), one ruminant-specific marker (CF193'), and one pig-specific marker (PF163) showed a high level of specificity (>90%). However, the data suggest that the proposed ruminant-specific CF128 marker would be better described as an animal marker, as it was observed in all bovine and sheep feces and 96% of pig feces. F RNA bacteriophages were detected in only 21% of individual fecal samples tested, in 60% of pig slurries, but in all sewage samples. Most detected F RNA bacteriophages were from genotypes II and III in sewage samples and from genotypes I and IV in bovine, pig, and bird feces and from pig slurries. Both MST methods were applied to 28 water samples collected from three watersheds at different times. Classification of water samples as subject to human, animal, or mixed fecal contamination was more frequent when using Bacteroidales markers (82.1% of water samples) than by bacteriophage genotyping (50%). The ability to classify a water sample increased with increasing Escherichia coli or enterococcus concentration. For the samples that could be classified by bacteriophage genotyping, 78% agreed with the classification obtained from Bacteroidales markers.  相似文献   

7.
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.  相似文献   

8.
The Adenoviridae and Polyomaviridae families comprise a wide diversity of viruses which may be excreted for long periods in feces or urine. In this study, a preliminary analysis of the prevalence in the environment and the potential usefulness as source-tracking tools of human and animal adenoviruses and polyomaviruses has been developed. Molecular assays based on PCR specifically targeting human adenoviruses (HAdV), porcine adenoviruses (PAdV), bovine adenoviruses (BAdV), and bovine polyomaviruses (BPyV) were applied to environmental samples including urban sewage, slaughterhouse, and river water samples. PAdV and BPyV were detected in a very high percentage of samples potentially affected by either porcine or bovine fecal contamination, respectively. However, BAdV were detected in only one sample, showing a lower prevalence than BPyV in the wastewater samples analyzed. The 22 slaughterhouse samples with fecal contamination of animal origin showed negative results for the presence of HAdV. The river water samples analyzed were positive for the presence of both human and animal adenoviruses and polyomaviruses, indicating the existence of diverse sources of contamination. The identities of the viruses detected were confirmed by analyses of the amplified sequences. All BPyV isolates showed a 97% similarity in nucleotide sequences. This is the first time that PAdV5, BAdV6, and BPyV have been reported to occur in environmental samples. Human and porcine adenoviruses and human and bovine polyomaviruses are proposed as tools for evaluating the presence of viral contamination and for tracking the origin of fecal/urine contamination in environmental samples.  相似文献   

9.
In this study, a molecular procedure for the detection of adenoviruses of animal origin was developed to evaluate the level of excretion of these viruses by swine and cattle and to design a test to facilitate the tracing of specific sources of environmental viral contamination. Two sets of oligonucleotides were designed, one to detect porcine adenoviruses and the other to detect bovine and ovine adenoviruses. The specificity of the assays was assessed in 31 fecal samples and 12 sewage samples that were collected monthly during a 1-year period. The data also provided information on the environmental prevalence of animal adenoviruses. Porcine adenoviruses were detected in 17 of 24 (70%) pools of swine samples studied, with most isolates being closely related to serotype 3. Bovine adenoviruses were present in 6 of 8 (75%) pools studied, with strains belonging to the genera Mastadenovirus and Atadenovirus and being similar to bovine adenoviruses of types 2, 4, and 7. These sets of primers produced negative results in nested PCR assays when human adenovirus controls and urban-sewage samples were tested. Likewise, the sets of primers previously designed for detection of human adenovirus also produced negative results with animal adenoviruses. These results indicate the importance of further studies to evaluate the usefulness of these tests to trace the source of fecal contamination in water and food and for environmental studies.  相似文献   

10.
The Adenoviridae and Polyomaviridae families comprise a wide diversity of viruses which may be excreted for long periods in feces or urine. In this study, a preliminary analysis of the prevalence in the environment and the potential usefulness as source-tracking tools of human and animal adenoviruses and polyomaviruses has been developed. Molecular assays based on PCR specifically targeting human adenoviruses (HAdV), porcine adenoviruses (PAdV), bovine adenoviruses (BAdV), and bovine polyomaviruses (BPyV) were applied to environmental samples including urban sewage, slaughterhouse, and river water samples. PAdV and BPyV were detected in a very high percentage of samples potentially affected by either porcine or bovine fecal contamination, respectively. However, BAdV were detected in only one sample, showing a lower prevalence than BPyV in the wastewater samples analyzed. The 22 slaughterhouse samples with fecal contamination of animal origin showed negative results for the presence of HAdV. The river water samples analyzed were positive for the presence of both human and animal adenoviruses and polyomaviruses, indicating the existence of diverse sources of contamination. The identities of the viruses detected were confirmed by analyses of the amplified sequences. All BPyV isolates showed a 97% similarity in nucleotide sequences. This is the first time that PAdV5, BAdV6, and BPyV have been reported to occur in environmental samples. Human and porcine adenoviruses and human and bovine polyomaviruses are proposed as tools for evaluating the presence of viral contamination and for tracking the origin of fecal/urine contamination in environmental samples.  相似文献   

11.
A molecular method, termed hierarchical oligonucleotide primer extension (HOPE), was used to determine the relative abundances of predominant Bacteroides spp. present in fecal microbiota and wastewaters. For this analysis, genomic DNA in feces of healthy human adults, bovines, and swine and in wastewaters was extracted and total bacterial 16S rRNA genes were PCR amplified and used as the DNA templates for HOPE. Nineteen oligonucleotide primers were designed to detect 14 Bacteroides spp. at different hierarchical levels (domain, order, cluster, and species) and were arranged into and used in six multiplex HOPE reaction mixtures. Results showed that species like B. vulgatus, B. thetaiotaomicron, B. caccae, B. uniformis, B. fragilis, B. eggerthii, and B. massiliensis could be individually detected in human feces at abundances corresponding to as little as 0.1% of PCR-amplified 16S rRNA genes. Minor species like B. pyogenes, B. salyersiae, and B. nordii were detected only collectively using a primer that targeted the B. fragilis subgroup (corresponding to approximately 0.2% of PCR-amplified 16S rRNA genes). Furthermore, Bac303-related targets (i.e., most Bacteroidales) were observed to account for 28 to 44% of PCR-amplified 16S rRNA genes from human fecal microbiota, and their abundances were higher than those detected in the bovine and swine fecal microbiota and in wastewaters by factors of five and two, respectively. These results were comparable to those obtained by quantitative PCR and to those reported previously from studies using whole-cell fluorescence hybridization and 16S rRNA clone library methods, supporting the conclusion that HOPE can be a sensitive, specific, and rapid method to determine the relative abundances of Bacteroides spp. predominant in fecal samples.  相似文献   

12.
The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10−6 g of wet pig feces in 500 ml of phosphate-buffered saline and 10−4 g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.  相似文献   

13.
14.
15.
BacteroidesPrevotella group is one of the most promising targets for detecting fecal contamination in water environments, principally due to its host-specific distributions and high concentrations in feces of warm-blooded animals. We developed real-time PCR assays for quantifying chicken/duck-, chicken-, and duck-associated BacteroidesPrevotella 16S rRNA genetic markers (Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac). A reference collection of DNA extracts from 143 individual fecal samples and wastewater treatment plant influent was tested by the newly established markers. The quantification limits of Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac markers in environmental water were 54, 57, and 12 copies/reaction, respectively. It was possible to detect possible fecal contaminations from wild ducks in environmental water with the constructed genetic marker assays, even though the density of total coliforms in the identical water samples was below the detection limit. Chicken/Duck-Bac marker was amplified from feces of wild duck and chicken with the positive ratio of 96 and 61 %, respectively, and no cross-reaction was observed for the other animal feces. Chicken-Bac marker was detected from 70 % of chicken feces, while detected from 39 % of cow feces, 8.3 % of pig feces, and 12 % of swan feces. Duck-Bac marker was detected from 85 % of wild duck feces and cross-reacted with 31 % of cow feces. These levels of detection specificity are common in avian-associated genetic markers previously proposed, which implies that there is a practical limitation in the independent application of avian-associated BacteroidesPrevotella 16S rRNA genetic markers and a combination with other fecal contamination markers is preferable for detecting fecal contamination in water environments.  相似文献   

16.
Based on the comparative 16S rRNA gene sequence analysis of fecal DNAs, we identified one human-, three cow-, and two pig-specific Bacteroides–Prevotella 16S rRNA genetic markers, designed host-specific real-time polymerase chain reaction (real-time PCR) primer sets, and successfully developed real-time PCR assay to quantify the fecal contamination derived from human, cow, and pig in natural river samples. The specificity of each newly designed host-specific primer pair was evaluated on fecal DNAs extracted from these host feces. All three cow-specific and two pig-specific primer sets amplified only target fecal DNAs (in the orders of 9–11 log10 copies per gram of wet feces), showing high host specificity. This real-time PCR assay was then applied to the river water samples with different fecal contamination sources and levels. It was confirmed that this assay could sufficiently discriminate and quantify human, cow, and pig fecal contamination. There was a moderate level of correlation between the Bacteroides–Prevotella group-specific 16S rRNA gene markers with fecal coliforms (r 2 = 0.49), whereas no significant correlation was found between the human-specific Bacteroides 16S rRNA gene with total and fecal coliforms. Using a simple filtration method, the minimum detection limits of this assay were in the range of 50–800 copies/100 ml. With a combined sample processing and analysis time of less than 8 h, this real-time PCR assay is useful for monitoring or identifying spatial and temporal distributions of host-specific fecal contaminations in natural water environments.  相似文献   

17.
PCR procedures based on 16S rRNA gene sequences specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human (adult and baby) feces and animal (rat, mouse, cat, dog, monkey, and rabbit) feces. Fusobacterium prausnitzii, Peptostreptococcus productus, and Clostridium clostridiiforme had high PCR titers (the maximum dilutions for positive PCR results ranged from 10(-3) to 10(-8)) in all of the human and animal fecal samples tested. Bacteroides thetaiotaomicron, Bacteroides vulgatus, and Eubacterium limosum also showed higher PCR titers (10(-2) to 10(-6)) in adult human feces. The other bacteria tested, including Escherichia coli, Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus acidophilus, Eubacterium biforme, and Bacteroides distasonis, were either at low PCR titers (less than 10(-2)) or not detected by PCR. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.  相似文献   

18.
19.
Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers specific for 16S rRNA gene sequences of Bacteroides distasonis, B. thetaiotaomicron, and B. vulgatus were designed. Hybridization with species-specific internal probes was used to detect the intended PCR products. Extracts from 66 known Bacteroides strains, representing 10 related species, were used to confirm the specificity of these PCR-hybridization assays. To test for specificity in feces, procedures were developed to prepare DNA of sufficient purity for PCR. Extracts of feces from 9 humans and 70 nonhumans (cats, dogs, cattle, hogs, horses, sheep, goats, and chickens) were each analyzed with and without an internal positive control to verify that PCR amplification was not inhibited by substances in the extract. In addition, serial dilutions from each extract that tested positive were assayed to estimate the relative abundance of target Bacteroides spp. in the sample. Depending on the primer-probe set used, either 78 or 67% of the human fecal extracts tested had high levels of target DNA. On the other hand, only 7 to 11% of the nonhuman extracts tested had similarly high levels of target DNA. An additional 12 to 20% of the nonhuman extracts had levels of target DNA that were 100- to 1,000-fold lower than those found in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest.The ability to discriminate between bovine and other sources of fecal contamination is necessary for the accurate evaluation of human health risks associated with agricultural runoff and focused water quality management to make waters safe for human use. Many methods have been proposed to identify bovine fecal pollution using a variety of different microbiology and molecular techniques. One of the most widely used approaches utilizes a PCR to amplify a gene target that is specifically found in a host population. Currently, there are numerous PCR-based assays for the detection and/or quantitative assessment of bovine fecal pollution available for microbial source-tracking (MST) applications (1, 5-7, 11, 14, 17, 18, 21, 23). These assays target genes ranging from mitochondrial DNA to ribosomal rRNA to other functional genes involved in microorganism-host interactions.The majority of the reported bovine-associated PCR assays target 16S rRNA genes from the order Bacteroidales. This bacterial group constitutes a large proportion of the normal gut microbiota of most animals, including bovines (28), and contains subpopulations closely associated with other animal hosts such as swine, horse, and human (1, 3, 6, 18, 24). Host-associated PCR-based assays targeting Bacteroidales genetic markers have been used to investigate the sources and levels of fecal pollution at a number of beaches and inland watersheds, with variable levels of success (10, 13, 22, 27). Researchers have postulated that differences in host animal age, health, diet, and geographic location may influence bacterial community structures in the bovine gastrointestinal tract (2, 9, 26). Without a priori knowledge of the potential representational bias introduced by such factors, it may be difficult to use these assays with confidence as indicators of bovine fecal pollution.Assay specificity and sensitivity and the prevalence and abundance of genetic marker determinations are typically estimated from the systematic testing of a collection of reference fecal sources collected from known animal sources. However, the characterization of assay performance has been limited, in most cases, to animal sources originating from a particular geographic region or industry, such as dairy or beef. The determination of assay performance across a range of different host populations is essential as the field moves toward the implementation of PCR-based host-associated fecal pollution assessment approaches.We report a performance study of seven PCR and quantitative PCR (qPCR) assays targeting Bacteroidales genes reported to be associated with either ruminant (e.g., bovine, goat, sheep, deer, and others) or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations. Assay specificity was determined by testing 175 fecal DNA extracts from 24 different animal species. For qPCR assays, the abundance of each genetic marker was measured within each bovine population and compared to quantities of Bacteroidales 16S rRNA genetic markers. These analyses indicated large discrepancies in assay performance across different bovine populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号