首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

2.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37°C. Of recombinant clones that failed to express xylE at 37°C, about 10% expressed the gene when grown at 22°C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

3.
P S Vermersch  G N Bennett 《Gene》1987,54(2-3):229-238
FokI, a class-IIS restriction endonuclease, cleaves double-stranded DNA to produce a protruding 5' end consisting of four nucleotides, 10-13 residues 3' from the nonpalindromic recognition sequence, GGATG. Cassettes which utilize this separation of cleavage and recognition site have been constructed for the purpose of linker mutagenesis and DNA replacement experiments. The cassettes are flanked by FokI recognition sequences oriented such that the FokI cleavage sites are several nucleotides beyond the cassette/vector fusion sites. FokI excises the cassette and several base pairs of the neighboring vector sequence. The ends produced in the vector by FokI cleavage are generally noncomplementary and suitable for the insertion of a segment of synthesized double-stranded replacement DNA. A cassette which contains a tyrosine tRNA suppressor gene (supF) is selectable by the suppression of amber mutations in the recipient host. A vector containing a pBR322-derived origin of replication, the Escherichia coli xanthine-guanine phosphoribosyl transferase gene as a selectable marker, and no FokI sites has been constructed for use with the FokI cassettes. An experiment which utilized the FokI/supF cassette to modify the N-terminal coding region of the R388 dihydrofolate reductase gene is described.  相似文献   

4.
Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or instability of the cloned DNA, or toxicity of the encoded products. We therefore created two mutant libraries in the human pathogen Helicobacter pylori using a simple, direct mutagenesis technique, which does not require E. coli as intermediate. H. pylori total DNA was digested, circularized and digested again with a frequently cutting restriction enzyme, and the resulting fragments were ligated to a kanamycin antibiotic resistance cassette. Subsequently, the ligation mixture was transformed into the parental H. pylori strain 1061. Insertion of the kanamycin cassette by double homologous recombination into the genome of H. pylori 1061 resulted in approximately 2500 kanamycin resistant colonies. Heterogeneity of kanamycin cassette insertion was confirmed by Southern blotting. The isolation of two independent H. pylori mutants defective in production of urease from this library underlines the potential of this mutagenesis strategy.  相似文献   

5.
A rapid and simple method for inactivating chromosomal genes in Yersinia   总被引:11,自引:0,他引:11  
A polymerase chain reaction (PCR)-based procedure without any cloning step was developed for a rapid mutagenesis/deletion of chromosomal target genes in Yersinia. For this purpose, a PCR fragment carrying an antibiotic resistance gene flanked by regions homologous to the target locus is electroporated into a recipient strain expressing the highly proficient homologous recombination system encoded by plasmid pKOBEG-sacB. Two PCR procedures were tested to generate an amplification product formed of an antibiotic resistance gene flanked by short (55 bp) or long (500 bp) homology extensions. Using this method, three chromosomal loci were successfully disrupted in Yersinia pseudotuberculosis. The use of this technique allows rapid and efficient large-scale mutagenesis of Yersinia target chromosomal genes.  相似文献   

6.
R Y Walder  J A Walder 《Gene》1986,42(2):133-139
In this report we describe a highly efficient method for site-specific mutagenesis using the yeast transformation system. The method is based on the observation that Saccharomyces cerevisiae can be transformed at high frequency with single-stranded circular DNA vectors [Singh et al., Gene 20 (1982) 441-449]. The model system studied was the TRP1 gene of S. cerevisiae cloned into a derivative of the phage M13mp9 vector containing the yeast URA3 gene. ARS1, located adjacent to the TRP1 gene, allows the plasmid to replicate autonomously in yeast. Synthetic 5'P-oligodeoxynucleotides, 19 and 35 nucleotides (nt) in length, designed to produce an A----T transversion mutation within the TRP1 gene, were annealed to ss DNA of the M13 vector at a molar ratio of 30:1 and directly transformed into yeast. The intended single nt mutation was obtained at frequencies of 24 and 43%, respectively. The latter approaches the theoretical limit of 50%. In the absence of the 5'-terminal phosphate, both the transformation frequency and the efficiency of mutagenesis by the synthetic oligodeoxynucleotide (oligo) were decreased by 2-4 fold. This procedure completely obviates the need for any enzymatic manipulations in vitro after forming the heteroduplex with the oligo primer containing the desired mutation. For yeast genes, direct phenotypic selection is possible in the recipient strain.  相似文献   

7.
利用DREAM设计和同源重组进行一步定点突变   总被引:3,自引:1,他引:2  
目的:建立基于DREAM设计和同源重组的简便、快速定点突变方法。方法:设计两条包含突变的反向PCR(inverse PCR)引物,使其5'端互补从而产生同源重组,同时使用DREAM设计方案在上述引物中引入限制性内切酶位点以便突变子筛选。用能扩增长片段的高保真耐热 DNA聚合酶扩增全长的质粒DNA,直接转化大肠杆菌。转化到细菌中的全长质粒DNA PCR产物可利用其末端同源序列发生同源重组而环化。利用引入的酶切位点方便地进行突变子的筛选。结果:我们用该方法成功地对长度大于7 kb的质粒进行了定点突变。结论:本定点突变无需任何突变试剂盒和特殊的试剂,只需一步反应即可完成;利用DREAM设计使克隆筛选简便可靠,高保真耐热DNA聚合酶可保证多数突变子克隆不发生意外突变,而该酶扩增长片段的能力使该方法适合于大多数质粒不经亚克隆直接突变。  相似文献   

8.
Gene splicing and mutagenesis by PCR-driven overlap extension   总被引:2,自引:0,他引:2  
Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week.  相似文献   

9.
利用Red重组系统快速构建基因打靶载体   总被引:1,自引:0,他引:1  
基因敲除小鼠模型是在哺乳动物体内研究基因功能最可靠的方法之一。利用常规的分子克隆的方法构建基因打靶载体往往工作周期长,对于难度特别大的基因有时甚至无法完成打靶载体的构建。通过合理应用Red重组系统和低拷贝中间载体,利用50bp的同源重组序列直接从BAC载体中克隆了长片段的小鼠基因组序列;将得到的基因组序列再次通过重组和改造,构建了Gpr56等基因的完全敲除并带有报告基因的打靶载体,实现了打靶载体的快速构建。  相似文献   

10.
For shotgun cloning into M13 vectors, a double-stranded cassette of synthetic oligonucleotides containing a SmaI site within the two halves of an EcoK site, has been introduced into the vector M13mp8. Cloning of blunt end DNA into the SmaI site destroys the EcoK site, and recombinants are therefore preferentially selected on transfection into a K strain of E.coli. For deletion mutagenesis using synthetic oligonucleotides, an M13 vector with four copies of the EcoK cassette has been made to facilitate the joining of lacZ or a Factor Xa cleavage site to any protein reading frame.  相似文献   

11.
This paper describes the construction and utilization of a novel shuttle vector for Streptomyces spp. and Escherichia coli as a useful vector in site-directed mutagenesis. The shuttle vector pIAFS20 (6.7 kb) has the following features: a replicon for Streptomyces spp., isolated from plasmid pIJ702; the thiostrepton-resistance gene as a selective marker in Streptomyces; the ColE1 origin, allowing replication in E. coli; and the ampicillin-resistance gene as a selective marker in E. coli. Vector pIAFS20 also contains the phage f1 intergenic region, which permits production of single-stranded DNA in E. coli after superinfection with helper phage M13K07. Moreover, the lac promoter is located in front of the multiple cloning sites cassette, allowing eventual expression of the cloned genes in E. coli. After mutagenesis and screening of the mutants in E. coli, the plasmids can be readily used to transform Streptomyces spp. As a demonstration, a 3.2-kb DNA fragment containing the gene encoding the xylanase A from Streptomyces lividans 1326 was inserted into pIAFS20, and the promoter region of this gene served as a target for site-directed mutagenesis. The two deletions reported here confirm the efficiency of this new vector as a tool in mutagenesis.  相似文献   

12.
A genetic enrichment procedure for mutations constructed by oligodeoxynucleotide(oligo)-directed mutagenesis of DNA cloned in M13mp vectors is described. The procedure uses an M13 vector that contains the cloned target DNA and amber (am) mutations within the phage genes I and II. This vector cannot replicate in a suppressor-free (sup degrees) bacterial strain. A gapped heteroduplex is formed by annealing portions of a complementary (-)strand containing wild-type copies of genes I and II to the am-containing template (+)strand. The oligo is annealed to the single-stranded (ss) region and the remaining gaps and nicks are repaired enzymatically to form a closed circular heteroduplex structure. By transfecting the DNA into a sup degrees host we promote the propagation of heteroduplexes with the oligo-containing (-)strand since only this construction contains the wild-type copies of genes I and II. This procedure eliminates the need for any physical separation of the covalently closed circular DNA that contains the oligo from the ss template. Using this technique we have constructed 17 point mutations with mutation frequencies ranging from 2-20% for single base changes and from 0.3-9% for multiple base changes. In addition, we found that the mutation frequencies were affected by the state of DNA methylation in the (+) and (-)strands.  相似文献   

13.
PCR ligation mutagenesis is a novel technique that can easily be adapted for many gene modification purposes. Successful application of this versatile technique involves sequence identification of the target gene region, creation of a mutagenic construct consisting of two gene-flanking proximal sequences specifically ligated to a selectable marker, and incorporation of this construct into the genome via genetic transformation and homologous recombination. In this study, we demonstrate the use of PCR, followed by restriction digestion and re-ligation to generate transforming constructs for the rapid deletion of open reading frames in transformable streptococci. Moreover, we characterized the dependence of transformation efficiency for mutant generation on the length of the homologous regions harbored by the mutagenic construct. Our results indicated that PCR ligation mutagenesis could be reliably employed for the systematic generation of gene deletion mutants in both highly transformable Streptococcus mutans and S. pneumoniae. Evaluation of the method showed a strong influence of the length of homologous flanking region on integration efficiency.  相似文献   

14.
Random insertional mutagenesis is an efficient tool for studying molecular mechanisms of many genetically determined processes. An improved variant of this method is REMI (Restriction Enzyme Mediated Integration) mutagenesis. In this method, the insertion cassette is introduced into the recipient cell together with restriction endonuclease. As a result, the REMI cassette insertion occurs in sites recognized by the restriction enzyme. The use of restriction endonucleases enhances transformation rate and provides cassette insertion in virtually any locus. A mutation is tagged by the insertion cassette, which can be identified by isolating the REMI cassette together with the flanking genomic DNA regions. The review describes general requirements to REMI. The mechanisms of REMI mutagenesis are surveyed with special reference to yeast Saccharomyces cerevisiae. Special attention is given to the development and use of REMI for other lower eukaryotes (yeasts and mould fungi). Drawbacks of the method and perspectives of its use are discussed.  相似文献   

15.
Dmitruk KV  Sibirnyĭ AA 《Genetika》2007,43(8):1013-1025
Random insertional mutagenesis is an efficient tool for studying molecular mechanisms of many genetically determined processes. An improved variant of this method is REMI (Restriction Enzyme Mediated Integration) mutagenesis. In this method, the insertion cassette is introduced into the recipient cell together with restriction endonuclease. As a result, the REMI cassette insertion occurs in sites recognized by the restriction enzyme. The use of restriction endonucleases enhances transformation rate and provides cassette insertion in virtually any locus. A mutation is tagged by the insertion cassette, which can be identified by isolating the REMI cassette together with the flanking genomic DNA regions. The review describes general requirements to REMI. The mechanisms of REMI mutagenesis are surveyed with special reference to yeast Saccharomyces cerevisiae. Special attention is given to the development and use of REMI for other lower eukaryotes (yeasts and mould fungi). Drawbacks of the method and perspectives of its use are discussed.  相似文献   

16.
We designed a transposon insertion mutagenesis system for Methanococcus species and used it to make mutations in and around a nifH gene in Methanococcus maripaludis. The transposon Mudpur was constructed with a gene for puromycin resistance that is expressed and selectable in Methanococcus species. A 15.6-kb nifH region from M. maripaludis cloned in a lambda vector was used as a target for mutagenesis. A series of 19 independent Mudpur insertions spanning the cloned region were produced. Four mutagenized clones in and around nifH were introduced by transformation into M. maripaludis, where each was found to replace wild-type genomic DNA with the corresponding transposon-mutagenized DNA. Wild-type M. maripaludis and a transformant containing a Mudpur insertion upstream of nifH grew on N2 as a nitrogen source. Two transformants with insertions in nifH and one transformant with an insertion downstream of nifH did not grow on N2. The transposon insertion-gene replacement technique should be generally applicable in the methanococci for studying the effects of genetic manipulations in vivo.  相似文献   

17.
Plasmid pU21, which carries the reaction center and light-harvesting genes (puf operon) of Rhodopseudomonas capsulata, has been redesigned by site-specific mutagenesis. Five restriction sites have been removed and three unique restriction sites have been introduced into this 11,589-bp pBR322 derivative. The modifications divide the puf structural genes into four regions separated by five unique and nonmutagenic restriction sites. These four fragments have been subcloned into the M13-mp series of vectors to facilitate oligonucleotide-mediated site-specific mutagenesis experiments on the photosynthetic apparatus structural genes. The inserts can then be returned from the M13 replicative form to the redesigned pU21 derivative. The modified plasmid, pU29, greatly facilitates in vitro mutagenesis experiments since previously described techniques and screening procedures are more efficient with M13 derivatives carrying smaller inserts. Additionally, tandem homologous sequences (the reaction center L and M subunits) within the puf operon are now separated on different phage vectors, eliminating problems encountered in the targeting of mutagenic oligonucleotides to only one of the two homologous sites.  相似文献   

18.
The synthetic oligonucleotide heptamer 5'-ATCCGTC-3' was reacted in vitro with N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene and the resulting product isolated by reverse-phase high-performance liquid chromatography (HPLC). This purified oligonucleotide, which was shown by chemical and enzymatic analysis to be a heptamer containing a single N-(deoxyguanin-8-yl)-2-aminofluorene adduct, was then used to situate the putatively mutagenic aminofluorene lesion within the genome of M13 mp9 by ligating it into a complementary single-stranded region located at a specific site in the negative strand of the duplex M13 mp9 DNA molecule. The presence of the adduct at the anticipated location was confirmed by taking advantage of the facts that AF adducts inhibit many restriction enzymes when located in or near their restriction sites and that the AF moiety should be contained within the HincII recognition sequence on M13 mp9 DNA. Upon attempted cleavage of the M13 DNA containing the site-specific AF adduct with HincII, we find that the large majority of the DNA remained circular, demonstrating the incorporation of the AF adduct in high yield into the DNA molecule at this location. This system should prove useful in vivo for the study of mutagenesis by chemical carcinogens and in vitro to study the interaction of purified DNA metabolizing proteins with a template containing a site-specific lesion.  相似文献   

19.
The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii.  相似文献   

20.
Construction of recombinant DNA by exonuclease recession.   总被引:3,自引:0,他引:3       下载免费PDF全文
We describe a new exonuclease-based method for joining and/or constructing two or more DNA molecules. DNA fragments containing ends complementary to those of a vector or another independent molecules were generated by the polymerase chain reaction. The 3' ends of these molecules as well as the vector DNA were then recessed by exonuclease activity and annealed in an orientation-determined manner via their complementary single-stranded regions. This recombinant DNA can be transformed directly into bacteria without a further ligase-dependent reaction. Using this approach, we have constructed recombinant DNA molecules rapidly, efficiently and directionally. This method can effectively replace conventional protocols for PCR cloning, PCR SOEing, DNA subcloning and site-directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号