首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectral distribution of downwelling solar irradiance is an important factor in the radiative balance, primary productivity and biogeochemistry in most lakes. In the present study, we show the relative importance of different inherent and apparent optical properties in controlling the spectral attenuation of diffuse downwelling irradiance in a large shallow lake in eastern China. Most importantly, we show how elevated concentrations of suspended matter not only increase attenuation, but are linked to a “spectral shift” in major attenuation peaks, with important consequences on biogeochemical processes and remote sensing. The analysis of the lake optical properties in relation to the geographical distribution of submerged macrophytes indicates how heterogenic optical conditions play a role in controlling benthic primary production.  相似文献   

2.
Seasonally, dissolved and particulate metal concentrations in the Scheldt estuary were assessed over a period of 4 years (1995–1998). High quality data were obtained following stringent analytical protocols for each step: sampling, sample treatment, sample storage and analysis. Of the 5 trace metals, Ni showed the most conservative behaviour, while Cd and Cu were clearly transferred from the particulate to the dissolved phase in the middle estuary. A substantial part of the particulate metals entering the estuarine system are lost through sedimentation. General seasonal patterns are the following: lower concentrations in spring and higher ones in winter (sometimes late fall/early winter) for dissolved metals, while in summer a pronounced rise of the longitudinal concentration profile is observed for the particulate metals. A comparison of the trace metal concentrations (dissolved and particulate) at the mouth of the estuary in 1995–1998 with those from 1981 to 1983, reveal reductions between 30 and 58%. Reductions based on direct emission measurements for almost the same period suggest reductions (dissolved + particulate) between 42 and 64%. Biomagnification (BMF) is the accumulation of a compound through the food-chain. It is in our case expressed as the ratio of the metal concentration in the organism (g g–1, d.w.)/the metal concentration in total suspended matter (g g–1, d.w.). Almost all BMF-values of Periwinkle, Nereis diversicolor and Macoma balthica (3 bottom organisms in the Scheldt estuary) are negative meaning that these organisms contain less heavy metals than the particulate suspended matter. For all organisms log BMFs for Pb, respectively Ni, are around –1.8, respectively –0.7. For Cd, Periwinkle shows slight enrichment (0.05) and for Cu even more (0.45), while negative values were observed for Nereis diversicolour and Macoma balthica. The latter organisms are more enriched in Zn (–0.09) than Periwinkle (–0.43).  相似文献   

3.
Optical Properties and Light Climate in Lake Verevi   总被引:2,自引:2,他引:0  
The optical properties and light climate during the ice-free period in the highly stratified Lake Verevi (Estonia) have been studied together with other lakes in same region since 1994. The upper water layer above the thermocline belongs to class “moderate” by optical classification of Estonian lakes but can turn “turbid” (concentration of chlorophyll a up to 73 mg m−3 and total suspended matter up to 13.2 g m−3) during late summer blooms. In the blue part of the spectrum, light is mainly attenuated by dissolved organic matter and in red part notably scattering but also absorption by phytoplanktonic pigments effect the spectral distribution of underwater light. Consequently, the underwater light is of greenish-yellow color (550–650 nm). Rapid change in optical properties occurs with an increase of all optically active substances close to thermocline (2.5–6 m). Optical measurements are often hampered beneath this layer so that modeling of the depth distribution of the diffuse attenuation coefficient is an useful compliment to field measurements. Kd,PAR ranges from 0.8 to 2.9 m−1 in the surface layer, and model results suggest that it may be up to 5.8 m−1 in the optically dense layer. This forms a barrier for light penetration into the hypolimnion.  相似文献   

4.
There has been a strong research focus on optical properties in temperate estuaries but very much less in tropical estuaries. These properties comprise light and beam attenuation dominated by suspended particulate matter, Chl a, and CDOM. Spatially and temporally distributed data on optical properties in a tropical wet and dry estuary are compared and discussed in relation to those of temperate estuaries. Sampling in the Nha Phu estuary, Vietnam, consisted of five stations on a transect from head to mouth that was sampled four times during dry conditions and three times during wet conditions between May 2006 and April 2008. Methods comprised CTD, optical measurements, and water sampling for suspended matter, Chl a, and CDOM. Results showed high light attenuation—K d(PAR)—in wet conditions and low in dry. K d(PAR) was highest at the estuary head and lower in the outer part. Spatial and temporal variations in K d(PAR) were in general dominated by variations in suspended particulate matter concentrations in both wet and dry conditions. Chl a concentrations were low and showed no strong variations between wet and dry conditions. CDOM absorption coefficients were higher in wet conditions with high values at the head and lower in the central part of the estuary. The depth of the photic zone was reduced by up to 50% during wet conditions. A residence time in the estuary of 5–6 days was derived from the rate of change of K d(PAR) after a period of heavy rain and discharge of freshwater into the estuary. This complied with a residence time of four and a half days derived from a basic physical relation. Optical properties were in general comparable to temperate estuaries in dry conditions although Chl a concentrations were lower in Nha Phu. A second distinctive point, as compared to temperate estuaries, was the episodic character with days of strong rainfall followed by longer periods of dry weather. All sampling, both wet and dry, was carried out in the dry season which implies a less definitive perception of wet and dry seasons.  相似文献   

5.
The pigment fingerprints, determined by HPLC, of suspended matter from different areas of the German Bight and from the Elbe Estuary are presented. These include areas with suspended matter concentrations varying between 10 mg l–1 in the deeper waters in the middle of the Bight and 150 mg l–1 in the Elbe mouth. Pigment data allows the identification of three groups of suspended matter (marine, turbidity zone and Elbe) for the numerous different locations. The changes in pigment concentrations in the suspended matter over tidal cycles are considered. The presence of pigments and pigment breakdown productsi.e. lutein and chlorophyllides is used to assess the possible condition of the phytoplankton present in the suspended matter. These pigment characteristics are compared with the loading of the heavy metals cadmium, copper, manganese, iron, zinc and lead in the particulate matter. It has been demonstrated that the pigments of the planktonic material can be used very effectively to identify different types of suspended matter and that the heavy metal loadings of the suspended matter were significantly correlated with chlorophyll-a.  相似文献   

6.
E. Chauvet  A. Fabre 《Hydrobiologia》1990,192(2-3):183-190
Water contents of suspended matter, algal pigments, particulate organic carbon and particulate phosphorus were measured in the rivers Garonne (2 sites) and Ariège (1 site) throughout an annual cycle. The general trend of the parameters was similar at the three sites. Depending on the sites, the period of algal growth (chlorophyll a + phaeopigments > 25 µg l–1), lasted from two to six weeks in August–September. The algal peaks reached 50 to 90 µg 1–1 of total pigments. High contents of particulate organic carbon (> 2 mg 1–1) occurred at the end of summer (coinciding with algal growth), and during the November and May floods. In summer 50–75 % of the suspended matter was organic, in spring this was 10 times less. The high linear correlation between particulate organic carbon and pigment contents (r = 0.87; P = 0.0001) suggested an algal origin of at least part of the particulate carbon. Algal carbon was minor in the annual fluxes of particulate carbon (25 to 39% depending on the sites), but relatively high in comparison with other rivers. The mean particulate phosphorus content calculated over the year was 24 µg l–1 ; it varied from 15 µg l–1 during the high water period to 28 µg 1–1 during the low water period. Likewise the percentage of particulate phosphorus in the suspended matter varied from 0.17 to 0.40. A negative linear correlation existed between particulate phosphorus content and specific discharge (r = – 0.46; P = 0.0001).The very marked seasonal trend of the parameters and the interactions led us to differentiate two modes of the rivers' functioning: a hydrologic phase and a biological phase. The hydrologic phase (high water) was dominated by the processes of erosion and transfer over the whole catchment area and the flood plain, while the biological phase was characterized by a high primary production in the river bed.  相似文献   

7.
Summary The macrophyte production and the transport of particulate organic matter between march and adjacent estuary have been investigated for a 30 ha salt marsh along the Oosterschelde estuary, The Netherlands.The primary production of macrophytes, measured with Smalley's method, was 837–1030 g dry organic matter.m–2.year–1. Measurements of amounts of particulate organic matter transported through one of the main tidal creeks in the salt march resulted in a net import. On average 31% of the material brought in by the flood settled in the marsh. The majority of this material is smaller than 63 m. On the other hand large floating material is exported during storm tides, although the quantity seems to be smaller than that of the suspended material imported.The differences between various marshes with regard to export and import of organic matter are explained in terms of marsh level, primary production, turbulent diffusion, sinking and resuspension of particulate matter and biotic transformations.  相似文献   

8.
The populations residing near polluted sites are more prone to various types of diseases. The important causes of air pollution are the suspended particulate matter, respirable suspended particulate matter, sulfur dioxide and nitrogen dioxide. As limited information is available enumerating the effect of these pollutants on liver physiology of the population living near the polluted sites; in the present study, we tried to investigate their effect on liver of the population residing near the oil drilling sites since birth. In this study, a randomly selected 105 subjects (46 subjects from oil drilling site and 61 subjects from control site) aged above 30 years were taken under consideration. The particulate matter as well as the gaseous pollutants, sulfur dioxide and nitrogen dioxide, were analyzed through a respirable dust sampler. The level of alkaline phosphatase, alanine transaminase and aspartate transaminase enzymes in serum were measured by spectrophotometer. The generalized regression model studies suggests a higher concentration of respirable suspended particulate matter, suspended particulate matter and nitrogen dioxide lowers the alkaline phosphatase level (p<0.0001) by 3.5 times (95% CI 3.1-3.9), 1.5 times (95% CI 1.4 - 1.6) and 12 times (95% CI 10.74 -13.804), respectively in the exposed group. The higher concentration of respirable suspended particulate matter and nitrogen dioxide in air was associated with increase in alanine transaminase level (p<0.0001) by 0.8 times (95% CI 0.589-1.049) and by 2.8 times (95% CI 2.067-3.681) respectively in the exposed group. The increase in nitrogen dioxide level was also associated with increase in aspartate transaminase level (p<0.0001) by 2.5 times (95% CI 1.862 – 3.313) in the exposed group as compared to control group. Thus, the study reveals that long-term exposure to the environmental pollutants may lead to liver abnormality or injury of populations living in polluted sites.  相似文献   

9.
Plant nitrogen (N)deficiency often limits crop productivity. Early detection of plant N deficiency is important for improving fertilizer N-use efficiency and crop yield. An experiment was conducted in sunlit, controlled environment chambers in the 2001 growing season to determine responses of corn (Zea mays L. cv. 33A14) growth and leaf hyperspectral reflectance properties to varying N supply. Four N treatments were: (1) half-strength Hoagland's nutrient solution applied throughout the experiment (control); (2) 20% of control N starting 15 days after emergence (DAE); (3) 0% N starting 15 DAE; and (4) 0% N starting 23 DAE (0% NL). Plant height, the number of leaves, and leaf lengths were examined for nine plants per treatment every 3–4 days. Leaf hyperspectral reflectance, concentrations of chlorophyll a, chlorophyll b,and carotenoids, leaf and canopy photosynthesis, leaf area, and leaf N concentration were also determined during the experiment. The various N treatments led to a wide range of N concentrations (11 – 48 g kg–1 DW) in uppermost fully expanded leaves. Nitrogen deficiency suppressed plant growth rate and leaf photosynthesis. At final harvest (42 DAE), plant height, leaf area and shoot biomass were 64–66% of control values for the 20% N treatment, and 46-56% of control values for the 0% N treatment. Nitrogen deficit treatments of 20% N and 0% N (Treatment 3) could be distinguished by changes in leaf spectral reflectance in wavelengths of 552 and 710 nm 7 days after treatment. Leaf reflectance at these two wavebands was negatively correlated with either leaf N (r = –0.72 and –0.75**) or chlorophyll (r = –0.60 and –0.72**) concentrations. In addition, higher correlations were found between leaf N concentration and reflectance ratios. The identified N-specific spectral algorithms may be used for image interpretation and diagnosis of corn N status for site-specific N management.  相似文献   

10.
Water, suspended particulate matter (SPM) and sediments were collected from the Esteiro de Estarreja (Ria de Aveiro, Portugal), which receives considerable quantities of waste mercury from a chlor-alkali plant. Dissolved and particulate Hg concentrations in the effluent ranged between 4 –167 g I–1 and 141–3144 g g–1, respectively, at pH values of >10. The effluent plume undergoes significant chemical changes during advection downestuary. The evidence suggested that adsorption of dissolved Hg onto organic-rich SPM was an important process. A maximum sediment Hg concentration of 500 g g–1 was found about 1.5 km from the discharge, as a result of the settling of Hg-rich SPM. Downestuary Hg concentrations in sediments decline to about 100 g g–1 at the mouth of the Esteiro. The particle-water interactions are discussed in terms of the transport of dissolved and particulate Hg into the Ria de Aveiro.  相似文献   

11.
The underwater light climate ultimately determines the depth distribution, abundance and primary production of autotrophs suspended within and rooted beneath the water column. This paper addresses the underwater light climate, with reference to effects of suspended solids and growth responses of autotrophs with emphasis on phytoplankton.Effects of the most important factors contributing to the absorption and scattering of light in surface waters were described. A comparison between spectral and scalar approaches to underwater light climate modeling was made and examples of linear approximations to light attenuation equations were presented. It was demonstrated that spectral and scalar photosynthesis models may converge to similar values in spectral-flat, high photon flux environments, but that scalar PAR models may overestimate biomass-specific production by 70%. Such differences can lead to serious overestimates of habitat suitability for the growth and survival of submersed macrophytes, particularly in relatively turbid, coastal waters.Relationships between physical and optical properties of suspended sediments were described theoretically, and illustrated with modeling examples and measurements. It was found that the slowly settling particulate fraction contributed substantially to the suspended solids concentration, and greatly to light attenuation within the water column. It was concluded that distinguishing particles by fall velocity and concomitant light attenuation properties in the modeling of underwater light conditions allowed the establishment of useful, although not simply linear, relationships.In eutrophic, shallow lakes, the largest contribution to light attenuation often originates from phytoplankton on a seasonal basis (months–years), but from suspended solids behavior on a shorter time scale (days–weeks), particularly when water bodies are wind-exposed. Temporal and spatial variabilities in wave height, suspended solids concentrations, and light attenuation within the water column, and their importance for autotrophic growth were described, and illustrated with a case study pertaining to Markermeer, The Netherlands. The influence of underwater light conditions on phytoplankton succession was briefly discussed and illustrated with a case study pertaining to Lake Veluwe, The Netherlands. It was concluded that modeling the underwater light climate in a water body on a few sites only can indicate how important various components are for the attenuation of light, but based on the current state of the art, it can not be expected that this will provide accurate predictions of the underwater light climate, and of phytoplankton and submersed macrophyte growth.  相似文献   

12.
Phosphorus (P) fractions were quantified in water samples collected on four occasions from sites at the lower tidal limit of seven Scottish East Coast rivers. Individual catchment characteristics ranged from those dominated by semi-natural land use to those where agriculture predominated. Together the rivers displayed attributes ranging from nearly pristine to those impacted by point and diffuse sources of pollutants. Sampling times were chosen to coincide with periods of low river flows where conditions should result in low concentrations of suspended particulate matter (SPM) but favourable for phytoplankton growth. Total phosphorus (TP) concentrations were < 0.004 mg l–1, 0.005–0.048 mg l–1 and 0.28–2.2 mg l–1 for pristine, agricultural and point source impacted rivers respectively. Soluble reactive phosphorus (SRP) represented from < 5% to > 90% of TP and dissolved P dominated all samples. The total phosphorus content (TPC) of SMP ranged from 0.1 to 1.1% and was significantly related to SRP. Organic matter was a significant component of SPM and organically bound phosphorus was the dominant form of particulate P. The C/P ratio of organic matter was wide, between 500–1200 for the more pristine systems which narrowed to < 400 for heavily impacted rivers. Exchangeable P increased during the summer but was generally a minor component of TP and therefore likely to be a significant source of SRP only in pristine rivers. Phytoplankton constituted between 5 and 46% of organic matter and concentrations of chlorophyll-a were significantly correlated with both TP and SRP.  相似文献   

13.
Duringan August, 1999 field campaign, measurements were made to establish hydrologicoptical properties of the Hudson/Raritan Estuary (New York-New Jersey): 1)concurrent above-and below-surface spectral irradiance; 2) sampling forlaboratory determination of inherent optical properties; and 3) concentrationsof optically-important water quality parameters. We used a bio optical modelbased on to predict thesubsurface irradiance reflectance from optically important water constituents.This model was then validated with the measured reflectance spectra from thefield spectroradiometers. Modeling of reflectance is a prerequisite forprocessing remote sensing data to desired thematic maps. These are key input tothe geographic information system (GIS) used to manage the water qualitycondition of the estuary.  相似文献   

14.
This research was designed to examine the presence of mutagenic/carcinogenic compounds in airborne pollutants in the rubber industry using an integrated chemical/biological approach. Inhalable airborne particulate matter (PM-10: <10 μm) was collected in four rubber factories using a high-volume sampler equipped with a cascade impactor for particle fractionation. The organic extracts of two different fractions (0.5–10 μm and <0.5 μm) were examined for mutagenicity with the Ames test and for in vitro DNA-damaging activity in human leukocytes by single-cell microgel electrophoresis (Comet assay). The extracts were also studied by gas chromatography/mass spectrometry (GC/MS) for polycyclic aromatic hydrocarbon (PAH) content. Nitrosamines in ambient air were sampled on cartridges and analysed by GC with a thermal energy analyser (TEA) detector. Airborne volatile genotoxins were monitored in situ using a clastogenicity plant test (Tradescantia/micronuclei test). The results showed that airborne particulates were mainly very fine (<0.5 μm) and that trace amounts of genotoxic nitrosamines (N-nitrosodimethylamine: 0.10–0.98 μg/m3; N-nitrosomorpholine: 0.77–2.40 μg/m3) and PAH (total PAH: 0.34–11.35 μg/m3) were present in air samples. Some extracts, particularly those obtained from the finest fractions, were mutagenic with the Ames test and genotoxic with the Comet assay. In situ monitoring of volatile mutagens using the Tradescantia/micronuclei test gave positive results in two working environments. The results showed the applicability of this integrated chemical–biological approach for detecting volatile and non-volatile genotoxins and for monitoring genotoxic hazards in the rubber industry.  相似文献   

15.
Hydrological and chemical structures off the Rhône River estuary resulting from the introduction of the river flow into the Mediterranean Sea are described. The effect of the fresh-water/sea-water interface on the distribution of inorganic and organic matter off the Rhône river is investigated. Strong vertical gradients of inorganic and dissolved organic matter such as lipids characterized the first few meters in this area (from 83.7 to 0.6 N-NO3 µgat l–1, from 6.39 to 0.92 N-NH4 µgat l–1 and from 299 to 73 µg l–1 of total dissolved lipids). At the interface, substantial increases of particulate organic (PON: from 45 µg l–1 at surface to 118 µg l–1 at the interface, POC: from 462 to 876 µg l–1, total particulate lipids: from 33 to 648 µg l–1) and suspended matter in general (from 18 to 22.2 mg l–1) were observed. High phytoplanktonic production may account for some of this enrichment, although passive accumulation might also be involved.  相似文献   

16.
A wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths. The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking phantoms. In breast tissue, the optical endpoints (hemoglobin, β-carotene, and scattering) that provide the contrast between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with <9% error compared to the full spectrum (450–600 nm). A multi-absorber liquid phantom study was also performed to show the improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be used for designing spectral imaging systems for other clinical applications.  相似文献   

17.
Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.  相似文献   

18.
Specific inherent optical properties (SIOP) of the Berau coastal waters were derived from in situ measurements and inversion of an ocean color model. Field measurements of water-leaving reflectance, total suspended matter (TSM), and chlorophyll a (Chl a) concentrations were carried out during the 2007 dry season. The highest values for SIOP were found in the turbid waters, decreasing in value when moving toward offshore waters. The specific backscattering coefficient of TSM varied by an order of magnitude and ranged from 0.003 m2 g−1, for clear open ocean waters, to 0.020 m2 g−1, for turbid waters. On the other hand, the specific absorption coefficient of Chl a was relatively constant over the whole study area and ranged from 0.022 m2 mg−1, for the turbid shallow estuary waters, to 0.027 m2 mg−1, for deeper shelf edge ocean waters. The spectral slope of colored dissolved organic matter light absorption was also derived with values ranging from 0.015 to 0.011 nm−1. These original derived values of SIOP in the Berau estuary form a corner stone for future estimation of TSM and Chl a concentration from remote sensing data in tropical equatorial waters.  相似文献   

19.
The relative scavenging abilities of suspended particulate oxides (SPOX), and organic matter (SPOM) for Cd, Zn and Cu were evaluated in a small, anthropogenically influenced river. In addition, the factor most important in influencing the sorption density (Ad: metal concentration associated with a given phase divided by the concentration of that geochemical phase in the suspended particulate pool) of each metal to SPOX and SPOM were identified through multiple linear regression analyses from the suite of: pH, temperature, dissolved metal concentration, and the concentration of the other particulate fraction. Results indicate that SPOX-SPOM interactions do occur in trace metal complexation reactions; and interactions are both phase and cation specific. Fe oxides are able to outcompete discrete organic binding sites for Cu and Zn as a relative decrease in the amount of these two cations sorbed to organic matter was observed with increasing particulate Fe oxides. SPOM concentration was identified as being most important in influencing Cu sorption densities associated with the SPOX fraction. Organic matter — oxide complexes are postulated to occur that enhance oxide sorption of Cu such that relatively more Cu is sorbed to particulate oxides with increasing particulate organic matter concentrations. Dissolved concentrations of Cd and Zn were found to be most important in influencing the sorption densities for these two metals associated with the oxides fraction. The sorption behaviour appears to follow Freundlich isotherm behaviour where the amount sorbed is a function of the dissolved concentration.  相似文献   

20.
Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号