首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Okra-leaf types of the upland cotton have the potential to be competitive to the normal-leaf types in yield and fibre quality, in addition to its potential resistance to insect pests and drought. Okra-leaf cotton accessions, collected at Cotton Research Institute, Faisalabad, Pakistan, were evaluated in respect of genetic variance and relative performance in half- and full-sib crosses (combining ability) for 2 years. Variation due to parents x years interaction was significant for lint percentage, seed weight and earliness index, resulting in moderately low but significant genetic variance across environments (years) for these traits. Interaction of environment with general combining ability was significant for seed yield, seed weight, and earliness index. General combining ability variation, contributed by females and males together, accounted for 71% of the total variation available for seed cotton yield, 60% of that for seed weight and height to node ratio each, and 75% of that for earliness index. Specific combining ability variation accounted for 85% and 51% of the total variation available for lint percentage and staple length, respectively. The contribution of female parents to general combining ability variation was higher than that of male parents for seed cotton yield, seed weight, height to node ratio, and earliness index. Okra-leaf accessions HR-VO-MS and HR107-NH were predicted to produce progenies having high yield, HR109-RT high lint percentage, while HR100-Okra, Gambo-Okra and HR-VO-1 were predicted to impart early crop maturity to their progenies by reason of their good general combining ability for these traits. The results also provided evidence that genes controlling high yield in HR-VO-MS and HR107-NH were different from those controlling high yield in HR109-RT. The set of genes controlling the high earliness index in HR100-Okra and that in HR-VO-MS also appeared to differ in expression.  相似文献   

2.
Resistance of transgenic cultivars based on the expression of one or more resistance genes is sooner or later broken by pathogens whose race-producing rates are high. Thus, combining transgenesis with elicitor-induced resistance is a promising approach. The elicitor-induced resistance is based on the expression of multiple resistance genes, which can prevent the adaptation of pathogens to transgenic races, maintain the stability of cultivars, and increase their lifespan. In this work, we used transgenic potato cultivars Temp and Superior transformed with Bacillus thuringiensis delta-endotoxin gene and Lukyanovskii transformed with leukocyte alpha-interferon gene. Arachidonic acid (10(-8) M) and soluble chitosan (5 kDa, 100 micrograms/ml) were used as elicitors for tuber treatment. Our data showed that pretreatment with elicitors causes a 15-25% increase in both the systemic prolonged resistance of potato tubers to Phytophthora infestans and their ability to repair mechanical damage.  相似文献   

3.
The use of plant biomass as substrate for biogas production has recently become of major interest in Europe. Winter Brassica rapa produces high early biomass and could be grown as a pre-crop harvested early in the year followed by a second crop such as maize. The objectives of this study were to estimate heterosis and combining ability of 15 European winter B. rapa cultivars for biomass yield at end of flowering. A half-diallel without reciprocals was conducted among cultivars to produce 105 crosses. These crosses and their parents were evaluated in two years at two locations in Northern Germany. Data collected were days to flowering (DTF), fresh biomass yield (FBY), dry matter content (DMC) and dry biomass yield (DBY). The mean DBY was 5.3 t/ha for the parental cultivars and 5.6 t/ha for their crosses. The crosses surpassed on average their parents by 7.6% for FBY and 5.9% for DBY whereas DMC was 1.4% higher in the parents. Maximum mid parent heterosis was 21.0% for FBY and 30.4% for DBY. Analysis of variance showed that genetic variance was mainly due to specific combining ability (SCA). The correlation between parental performance and general combining ability (GCA) was 0.42** for FBY and 0.53** for DBY. In conclusion, the amount of heterosis in crosses between European winter B. rapa cultivars is not very high on average, but can be up to 30% in the best crosses. Selection of parental combinations with high specific combining ability to produce synthetic cultivars can rapidly improve biomass yield.  相似文献   

4.
Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA) for each homokaryotic parental line and to estimate the specific combining ability (SCA) of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.  相似文献   

5.
Summary Twenty-one progenies of smooth bromegrass (Bromus inermis Leyss.) from a 7 X 7 half diallel cross, with their parents, were evaluated for three years at four locations in Alberta for the genetic variation of stability in expression of their annual yield. The linear response and deviation from linear response for each genotype were the two stability parameters considered, together with mean performance in the evaluation of each genotype. Four high yielding genotypes, namely 12, 13, 16, and 26, had general adaptability, while genotype 23 was especially suited to a poor environment. Combining ability analysis showed that general combining ability (GCA) and specific combining ability (SCA) were both important in the expression of yield. Inheritance of linear regression was controlled predominantly by GCA whereas both GCA and SCA were equally important in the expression of deviation. The presence of a substantial proportion of variability due to the additive genetic component in the linear response suggests that it should be possible to exploit this fraction of variability in developing high yielding stable cultivars.  相似文献   

6.
Eight carrot cultivars representing the range of resistance to carrot fly damage as assessed in England were grown at 12 sites in five European countries in 1977 and in 1978. The trials provided evidence of agreement with the findings in England for both years in the ranking of cultivars with respect to their resistance to carrot fly damage. The Nantes cultivar Clause's Sytan Original was the most resistant cultivar tested. Consistent results were obtained from sites where carrots were assessed at harvest and carrot fly attack was severe. A significant interaction between sites and cultivars was largely due to sites where carrots were stored prior to assessment.  相似文献   

7.
Resistance of transgenic cultivars based on the expression of one or more resistance genes is sooner or later broken by pathogens whose race-producing rates are high. Thus, combining transgenesis with elicitor-induced resistance is a promising approach. The elicitor-induced resistance is based on the expression of multiple resistance genes, which can prevent the adaptation of pathogens to transgenic cultivars, maintain the stability of cultivars, and increase their lifespan. In this work, we used transgenic potato cultivars Temp and Superior transformed with Bacillus thuringiensis -endotoxin gene and Luk'yanovskii transformed with leukocyte interferon gene. Arachidonic acid (10–8 M) and soluble chitosan (5 kDa, 100 g/ml) were used as elicitors for tuber treatment. Our data showed that pretreatment with elicitors causes a 15–25% increase in both the systemic prolonged resistance of potato tubers to Phytophthora infestansand their ability to repair mechanical damage.  相似文献   

8.
Summary Experiments in which a series of host cultivars are inoculated in all combinations with a series of pathogen isolates have been used to detect specificity in the host resistance. A theoretical model of polygenic resistance involving both general and specific interactions with pathogen virulence was developed to test the abilities of statistical analyses to discriminate between host genotypes with different levels of general and specific resistance. Estimates of levels of specific resistance could be obtained in regressions of disease severity scores for each host cultivar X pathogen isolate combination vs. the virulence index of each isolate. If the virulence index was based on the mean disease severity induced by the isolate over all host cultivars, the slopes of the regression lines were correlated with the levels of specific resistance in host cultivars. If the virulence index was based on the disease severity induced by the isolate on a host cultivar with a minimum of specific resistance, the mean squares for deviations from the regression were correlated with the levels of specific resistance in host cultivars. A method was developed to consistently choose host cultivars with minimum specific resistance. The two regression analyses gave estimates of specificity in randomly generated, model genotypes of approximately equal accuracy, although the second method appeared to be more accurate when the numbers of loci controlling resistance and virulence were small. The best estimates of numbers of genes for specific resistance were obtained by calculating a rating based on mean disease severity, the mean square for deviation from the regression on the virulence index based on disease severity on the cultivar with minimum specific resistance and the slope of the regression on the virulence index based on the mean disease severity. The best estimates of proportions of resistance genes that were specific were obtained by calculating a rating based on the above deviation mean square and slope alone.Cooperative investigation of the U.S. Department of Agriculture, Agricultural Research Service and the North Carolina Agricultural Research Service. Journal Series Paper No. 8326 of the North Carolina Agricultural Research Service  相似文献   

9.
Summary Quantitative inheritance of resistance to Phytophthora pod rot (Ppr) was studied in cocoa hybrid progeny from 12 Trinitario x Amazonian crosses and their reciprocal crosses. The crossing scheme was similar to a factorial design. Disease was assessed by the number and percentage of infected pods on each tree. Highly significant differences due to general combining abilities (GCA) were obtained for all characters, except for the GCA of Trinitario on total pod production. Differences for specific combining ability (SCA) were not significant for all characters. There were no significant differences between reciprocal crosses. The Trinitario clone K82 provided the only source for the hybrid progenies of strong Ppr resistance to the hybrid progenies, while K20 provided moderate resistance. Other parental clones — KA2-101, KA5-201, KEE 2, KEE 5, and KEE 52 — produced progenies which were susceptible to Ppr. It is evident that resistance to Ppr in cocoa is inherited additively. Maternal and cytoplasmic effects were assumed to have no influence on inheritance of resistance. It is also concluded that resistance to Ppr of the kind shown by K82 is likely to be horizontal resistance. Breeding for high-yielding cultivars combined with Ppr resistance is the most effective way of controlling Ppr of cocoa on the crops of growers with small holdings in Papua New Guinea.  相似文献   

10.
Summary Mixing ability analyses, adapted from combining ability analyses used in plant breeding, were performed on yield and stripe rust (Puccinia striiformis) severity data for two-way mixtures among either four or five club wheat (Triticum aesitivum) cultivars grown in five environments. Initially, two statistics were calculated for each trait: general mixing ability (GMA), the average performance of a cultivar over all of the mixtures, and specific mixing ability (SMA), the deviation of a mixture from the estimated performance of the pair based on its average performance in mixtures. General mixing ability was further divided into two components: genotype performing ability (GPA), the innate ability of a cultivar to yield and resist disease in pure stand, and true general mixing ability (TGMA), the average ability of a cultivar to influence yield and disease when mixed with other cultivars. Significant mean squares for genotypes, GMA, SMA, and TGMA were found for all of the traits in most environments. Examination of TGMA and SMA revealed cultivars and cultivar combinations that were statistically better mixers than the others. Some of the significant effects were probably due to the use of cultivars that differed in height and stripe rust resistance, but for other combinations there was no apparent explanation for enhanced mixing ability.Paper No. 9132 of the Oregon Agricultural Experiment Station. Supported in part by USDA Grants 88-34106-3631 and 88-37151-3662  相似文献   

11.
Summary Combining ability studies for grain yield and its primary component traits in diallel crosses involving seven diverse wheat cultivars of bread wheat (Triticum aestivum L.) over generations F1-F5 are reported. The general and specific combining ability variances were significant in all generations for all the traits except specific combining ability variance for number of spikes per plant in the F5. The ratio of general to specific combining ability variances was significant for all the traits except grain yield in all the generations. This indicated an equal role of additive and non-additive gene effects in the inheritance of grain yield, and the predominance of the former for its component traits. The presence of significant specific combining ability variances in even the advanced generations may be the result of an additive x additive type of epistasis or evolutionary divergence among progenies in the same parental array. The relative breeding values of the parental varieties, as indicated by their general combining ability effects, did not vary much over the generations. The cheap and reliable procedure observed for making the choice of parents, selecting hybrids and predicting advanced generation (F5) bulk hybrid performance was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.  相似文献   

12.
Although unadapted germplasms have been used to improve disease and insect resistance in alfalfa, there has been little effort to use these for improving forage yield. We evaluated genetic diversity and combining ability among two unadapted germplasms (Medicago sativa ssp. sativa Peruvian and M. sativa ssp. falcata WISFAL) and three Northern U.S. adapted alfalfa cultivars. Population structure analyses indicated that the WISFAL and Peruvian germplasms were genetically distinct from the cultivars, although Peruvian was relatively closer to the cultivars. Peruvian and WISFAL germplasms were intermated to generate a novel hybrid population. This population was crossed to the three cultivars as testers, and the testcross progenies were evaluated for forage yield along with the hybrid population, the original germplasms (Peruvian, WISFAL and cultivars), testcrosses of Peruvian and WISFAL to the three cultivars and a three-way hybrid of the cultivars. The experiment was carried out in the field in Temuco, Chile and Arlington, Wisconsin, USA, and forage was harvested during two seasons. Results from these evaluations showed that hybrids between the Peruvian × WISFAL population and the cultivar testers yielded as much as the cultivar testers. Heterosis was observed between Peruvian and WISFAL, and between these germplasms and the cultivar testers, suggesting that each germplasm may contain different favorable alleles. If Peruvian and WISFAL populations contain alleles at different loci that complement cultivar testers, then combining and enriching these alleles in a single population could result in improved combining ability with alfalfa cultivars.  相似文献   

13.
The inheritance of partial resistance within eight bean cultivars to a single-pustule isolate of bean rust was studied by means of a F1 diallel test. General combining ability (GCA) and specific combining ability (SCA) were very highly significant over two seasons and in interaction with seasons. The partitioning of the sums of squares indicated the greater importance of GCA in the inheritance of the resistance. Reciprocal effects were not significant. The estimates of narrow-sense heritability in the two seasons were 0.899 ± 0.056 and 0.603 ± 0.065.  相似文献   

14.
Silicon (Si) can improve resistance of plants to insect attack and may also enhance tolerance of water stress. This study tested if Si-mediated host plant resistance to insect attack was augmented by water stress. Four sugarcane cultivars, two resistant (N21, N33) and two susceptible (N26, N11) to Eldana saccharina Walker were grown in a pot trial in Si-deficient river sand, with (Si+) and without (Si-) calcium silicate. To induce water stress, irrigation to half the trial was reduced after 8.5 months. The trial was artificially infested with E. saccharina eggs after water reduction and harvested 66 days later. Silicon treated, stressed and non-stressed plants of the same cultivar did not differ appreciably in Si content. Decreases in numbers of borers recovered and stalk damage were not associated with comparable increases in rind hardness in Si+ cane, particularly in water-stressed susceptible cultivars. Overall, Si+ plants displayed increased resistance to E. saccharina attack compared with Si- plants. Borer recoveries were significantly lower in stressed Si+ cane compared with either stressed Si- or non-stressed Si- and Si+ cane. Generally, fewer borers were recovered from resistant cultivars than susceptible cultivars. Stalk damage was significantly lower in Si+ cane than in Si- cane, for N21, N11 and N26. Stalk damage was significantly less in Si+ combined susceptible cultivars than in Si- combined susceptible cultivars under non-stressed and especially stressed conditions. In general, the reduction in borer numbers and stalk damage in Si+ plants was greater for water-stressed cane than non-stressed cane, particularly for susceptible sugarcane cultivars. The hypothesis that Si affords greater protection against E. saccharina borer attack in water-stressed sugarcane than in non-stressed cane and that this benefit is greatly enhanced in susceptible cultivars is supported. A possible active role for soluble Si in defence against E. saccharina is proposed.  相似文献   

15.
小麦持久抗条锈品种斯汤佩利的遗传机制研究   总被引:4,自引:0,他引:4  
对持久抗条锈小麦品种斯汤佩利进行了抗条锈特点研究和抗性遗传分析.斯汤佩利反应型0~1型,普遍率、严重度和病情指数3个抗性组分及其平均日变化率都很低,与三类对照品种之间有极显著差异.与中抗-中感为特征的、抗性由多基因或由主效基因与多基因共同控制的一般持久抗病品种相比,属于典型特例.其抗条锈性由2对显性基因互补控制,干尖性状由1对显性基因控制,二者之间不连锁,因此,干尖不能作为斯汤佩利抗锈性的辅助选择标记.  相似文献   

16.
In a choice-experiment, 42 chrysanthemum cultivars were screened for resistance toFrankliniella occidentalis (Pergande). Oviposition preference, two types of feeding damage and thrips numbers per flower were recorded as measures of resistance. A large genetic variation in thrips resistance was found among the cultivars screened. The amount of feeding damage was strongly determined by oviposition preference. Besides, a positive correlation was found between the oviposition preference in non-flowering chrysanthemums (number of eggs) and flowering chrysanthemums (number of thrips per flower). Thrips feeding on young, developing tissues, causes growth damage because affected cells are unable to expand and leaves become distorted. Thrips feeding on older, expanded leaves causes cells to become filled with air, resulting in ‘silver’ damage. The amounts of growth-and ‘silver’ damage were negatively correlated suggesting that thrips chose either young or older leaves to feed on. The order of resistance among cultivars did not change during the experiment. In order to get more insight in resistance mechanisms the influence of some plant- and flower characters on resistance was examined. The plant characters height, number of leaves, flower production and flower weight were all negatively correlated with resistance. It is suggested that tall chrysanthemum cultivars with many and large flowers may invest less in defence than smaller cultivars, and therefore are more damaged by thrips.  相似文献   

17.
The objective of this study was to assess five cacao cultivars (selfs) and 20 hybrids with regard to their general-and specific-combining ability for yield components using method 1, model I, of the diallel analysis system. The selfings and the hybrids were obtained through controlled crossings, tested in the field in a random block design with four replications and plots containing 16 plants. The experiment was set up in the Centro de Pesquisas do Cacau, in Itabuna, Bahia, Brasil, in 1975. The characteristics studied were: the number of healthy and collected fruits per plant (NHFP and NCFP), the weight of humid seeds per plant and per fruit (WHSP and WHSF), and the percentage of diseased fruits per plant (PDFP), for 5 years (1986–1990). The F-test values, highly significant for general combining ability (GCA) and specific combining ability (SCA), demonstrated the existence of variability for both effects. However, the effects of SCA were greater than those of GCA, when compared in terms of the average squared effects. This condition held for the characteristics NHFP, NCFP and WHSP, which shows the relative importance of the non-additive genetic effects over the additive effects. The reciprocal effects did not show significance. Breeding methods which explore the additive portion of genetic variance should be employed for obtaining higher-yielding cacao and high seed weight. For this, the segregant populations should involve cultivars CEPEC 1, SIAL 169 and ICS 1. Combinations involving the cultivar ICS 1 presented the most favorable results for the characteristics WHSP and WHSF, where the hybrid SIAL 169 x ICS 1 and its reciprocal were outstanding.  相似文献   

18.
The fall armyworm, Spodoptera frugiperda (J. E. Smith), and southwestern corn borer, Diatraea grandiosella Dyar, are major insect pests of maize, Zea mays L., in the southern USA. Both insects feed extensively on leaves of plants in the whorl stage of growth. A diallel cross of seven inbred lines with different levels of susceptibility to leaf feeding damage in the field was evaluated in a laboratory bioassay for fall armyworm and southwestern corn borer larval growth. Diets were prepared from lyophilized leaf tissue of field-grown plants of the inbred lines and their 21 F1 hybrids. One inbred line, Tx601, exhibited heavy leaf damage in field tests but showed moderate resistance in the laboratory bioassay. Both general and specific combining ability were highly significant sources of variation in the inheritance of fall armyworm and south-western corn borer larval growth in the laboratory bioassay. Tx601 showed excellent general combining ability for reduced larval growth of both species.This article is a contribution of the United States Department of Agriculture, Agricultural Research Service, in cooperation with the Mississippi Agricultural and Forestry Experiment Station. Journal No. J-8525  相似文献   

19.
【背景】西花蓟马自2003年传入我国以来,呈扩张趋势。辣椒上西花蓟马以化学防治为主,国内尚无抗性资源保护、抗(耐)虫性资源筛选等相关研究。【方法】以20个辣椒品种和西花蓟马为材料,采用幼苗接虫法,根据危害症状分级,计算为害指数并作为抗(耐)评价指标,然后测定不同抗(耐)材料苗期受西花蓟马危害后防御酶活性的变化,探讨其与抗性的关系。【结果】在20个供试辣椒品种中,湘研13号和博辣4号对西花蓟马的抗性较强,其他品种抗性较差,兴蔬绿剑抗性最差;不同辣椒品种抗(耐)虫性与过氧化物酶变化呈正相关,但与过氧化氢酶相关性不显著。【结论与意义】本研究建立了辣椒抗(耐)西花蓟马的筛选评价体系,为挖掘抗西花蓟马的种质资源和西花蓟马的有效防控提供了依据。  相似文献   

20.
Fifty-two alfalfa (Medicago sativa L.) clones, randomly selected from the cultivar Baker and the experimental line MNGRN-4, were evaluated for resistance (based on nematode reproduction) to Pratylenchus penetrans in growth chamber tests (25 C). Twenty-five clones, representing the range of nematodes and eggs per plant, were selected and retested. Four moderately resistant and two susceptible alfalfa clones were identified. Inheritance of resistance to P. penetrans was studied in these six clones using a diallel mating design. The S₁, Fl, and reciprocal progenies differed for numbers of nematodes and eggs per g dry root and for shoot and root weights (P < 0.05). Resistance, measured as numbers of nematodes in roots, was correlated between parental clones and their S₁ families (r = 0.94), parental clones and their half-sib families (r = 0.81), and S₁ and half-sib families (r = 0.88). General combining ability (GCA) effects were significant for nematode resistance traits. Both GCA and specific combining ability (SCA) effects were significant for plant size traits, but SCA was more important than GCA in predicting progeny plant size. Reciprocal effects were significant for both nematode resistance and plant size traits, which may slow selection progress in long-term selection programs. However, the GCA effects are large enough that breeding procedures that capitalize on additive effects should be effective in developing alfalfa cultivars with resistance to P. penetrans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号