首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selection on life history traits such as the timing of maturation and the size at maturity strongly depends on the mating system. In spiders, the mating system hypothesized to Be determined by spermathecal morphology and the related sperm precedence pattern. In a natural population of the eresid spider Stegodyphus lineatus , predictions concerning the timing of maturation, male mating behaviour and success were tested. Eresid spiders are supposed to show protandry, prematuration mate guarding and strong male-male competition resulting in selection for large body size and early maturation. In contrast to these predictions, male and female maturation overlapped largely. Males did not guard premature females nor was there evidence for male-male competition. Among mating pairs, male did not relate to female size, nor to duration of cohabitation. Evidence for an advantage of first over second or large over small males is weak. In males, body size at maturity and the time of maturation were negatively correlated although a trade off between timing of maturation and the body size reached by then should result in a positive correlation. Possible causes are discussed.  相似文献   

2.
Robb T  Forbes MR 《Biology letters》2005,1(2):118-120
Hosts often differ in their degree of parasitism and their expression of resistance. Yet very little is known about how the availability (and allocation) of resources to parasites at pre-infective stages influences their success in initiating parasitism, or in inducing and succumbing to resistance from hosts. We studied a damselfly-mite association to address how experimental variation in the age of first contact with hosts (timing) influenced subsequent parasite fitness. We demonstrate that timing influenced the ability of larval mites to make the transition to parasitism, but was not associated with measures of physiological resistance by hosts. Timing presumably relates to the availability of resources remaining for individuals to exploit their hosts. More research is needed on the importance of such factors, from variation in host resistance and parasite success and, ultimately, to the numbers and distributions of parasites on hosts.  相似文献   

3.
4.
Nicieza AG  Alvarez D 《Oecologia》2009,159(1):27-39
Compensatory growth (CG) is a key issue in work aiming at a full understanding of the adaptive significance of growth plasticity and its carryover effects on life-history. The number of studies addressing evolutionary explanations for CG has increased rapidly during the last few years, but there has not been a parallel gain in our understanding of the methodological difficulties associated with the analysis of CG. We point out two features of growth that can have serious consequences for detecting CG: (1) size dependence of growth rates, which causes nonlinearity of growth trajectories, and; (2) temporal overlapping of structural growth and replenishment of energy reserves after a period of famine. We show that the currently used methods can be prone to spurious detection of CG (Type I error) under conditions of nonlinear growth, and therefore lead to the accumulation of a significant amount of false “empirical support.” True and simulated growth data provided consistent results suggesting that a substantial fraction of the existing evidence for CG may be spurious. A small curvature in the growth trajectory can lead to spurious “detection” of CG when control and manipulated trajectories are compared over the same time interval (the “simultaneous” approach). We present a novel, robust method (the “asynchronous” approach) based on the accurate selection of control trajectories and comparison of control and treatment growth rates at different times. This method enables a reliable test to be performed for compensation under asymptotic growth. While the general results of our simulations do not support the application of conventional methods to the general case of nonlinear growth trajectories under the simultaneous approach, simple methods may prove valid if the experimental design allows for asynchronous comparisons. We advocate an alternative approach to deal with “safe” detection of CG that overcomes the problems associated with the occurrence of nonlinear and asymptotic growth, and provide recommendations for improving CG study designs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
This interdisciplinary scientific inquiry lesson specifically utilizes the 5E learning cycle to engage high school students in an investigation on size-dependent properties of matter. In particular, this inquiry lesson focuses on a biologically relevant phenomenon, namely accessibility to a pharmaceutical drug with respect to the size of the pill. In this context, students design and conduct a controlled experiment to test how the accessibility to an encapsulated drug is affected by the change in the size of the pill. Thus, through this investigation, students not only learn about the relationship between the size of a material in terms of surface area-to-volume ratio and the rate of diffusion of molecules, but also extend this knowledge to the importance of size in the context of nanoscale. Additionally, students practice the science process skills involved in undertaking a scientific inquiry.  相似文献   

7.
8.
Temporal heterogeneity of water supply can alter the biomass growth of plants, even when the same total amount of water is provided. Most studies of heterogeneous watering have focused on responses of whole populations rather than individuals in a population. The effects of water supply heterogeneity may also depend on nutrient levels. Thus, we investigated the integrated effects of water supply heterogeneity and nutrient levels on plants within a population. Six plants of Perilla frutescens per pot were grown under different combinations of frequency of water supply and nutrient level. The effects on yield per pot, individual biomass, and allocation to roots were analyzed after a 44-day watering regime. A homogeneous water supply resulted in a greater yield per pot and greater biomass of individual plants than a heterogeneous supply. However, the interaction between water supply heterogeneity and nutrient level was significant only in larger individuals, not in smaller plants or at the p. Water supply heterogeneity affected the growth of all plants, but the effects differed among individuals depending on their relative size within their population. It is therefore important to focus not only on whole-population characteristics such as yield but also on individuals in a population in order to reveal the detailed effects of water supply heterogeneity.  相似文献   

9.
10.
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time‐limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1‐year‐old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.  相似文献   

11.
12.
Shorter season length and lower temperature towards higher latitudes and altitudes often select for intraspecific clines in development and growth rates. However, the physiological mechanisms enabling these clines are not well understood. We studied the relationship between routine metabolic rate (RMR) and larval life-history traits along a 1500-km latitudinal gradient across Sweden. In a laboratory common garden experiment, we exposed eight common frog Rana temporaria populations to two experimental temperatures (15 and 18 °C) and measured RMR using flow-through respirometry. We found significant differences among populations in RMR, but there was no evidence for a linear relationship between latitude and RMR in either temperature treatment. However, we found a concave relationship between latitude and RMR at the lower experimental temperature. RMR was not correlated with growth rate at population or at individual levels. The results obtained suggest that, unlike in growth and development rates, there is no latitudinal cline in RMR in R. temporaria tadpoles.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 217–224.  相似文献   

13.
14.
The way herbivores select what to eat is of considerable practical and theoretical interest, and has given rise to different theories and hypotheses. The plant vigour hypothesis predicts that herbivores feed preferentially on vigorous, i.e., large and/or fast-growing plants or plant parts. These predictions have previously primarily been tested on variation within plant species. Here we test whether differences in vigour among plant species in the same environment can explain differences in herbivore attack. We studied variation in browsing pressure by a guild of large herbivores on different woody species in an African savanna ecosystem. Shoot growth rate, annual shoot length, basal shoot diameter and annual shoot volume of 14 woody plant species were measured in the field. Plant species’ shoot vigour represented by the first PCA axis scores generated from the four shoot variables were then related to browsing pressure (% utilisation) on each of the species by native ungulates and elephant. Nutrient and fibre concentrations and tannin activity were also determined for the 14 woody plant species. We found ungulate browsing pressure to show a unimodal relationship with plant species’ shoot vigour. The heaviest browsing pressure was on plant species with shoots of intermediate vigour. We suggest that species with less vigorous shoots had low nutrient and high fibre concentrations and offered small bite sizes, whereas species with vigorous shoots had high nutrient concentrations but larger shoot diameters than the bite diameters of browsing ungulates. Elephant browsing pressure was not related to plant species’ shoot vigour.  相似文献   

15.
Experiments are described in which tobacco (Nicotiana tabacum L.) transformed with antisense rbcS to decrease expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) was used to evaluate the contribution of Rubisco to the control of photosynthetic rate, and the impact of a changed rate of photosynthesis on whole plant composition, allocation and growth. (1) The concept of flux control coefficients is introduced. It is discussed how, with adequate precautions, a set of wild-type and transgenic plants with varying expression of an enzyme can be used to obtain experimental values for its flux control coefficient. (2) The flux control coefficient of Rubisco for photosynthesis depends on the short-term conditions. It increases in high light, or low CO2. (3) When plants are grown under constant irradiance, the flux control coefficient in the growth conditions is low (<0.2) at irradiances of up to 1000μmol quanta m−2 s−1. In a natural irradiance regime exceeding 1500μmol quanta m−2 s−2 over several hours the flux coefficient rose to 0.8–0.9. It is concluded that plants are able to adjust the balance between Rubisco and the remainder of the photosynthetic machinery, and thereby avoid a one-sided limitation of photosynthesis by Rubisco over a wide range of ambient growth irradiance regimes. (4) When the plants were grown on limiting inorganic nitrogen, Rubisco had a higher flux control coefficient (0.5). It is proposed that, in many growth conditions, part of the investment in Rubisco may be viewed as a nitrogen store, albeit bringing additional marginal advantages with respect to photosynthetic rate and water use efficiency. (5) A change in the rate of photosynthesis did not automatically translate into a change in growth rate. Several factors are identified which contribute to this buffering of growth against a changed photosynthetic rate. (6) There is an alteration in whole plant allocation, resulting in an increase in the leaf area ratio. The increase is mainly due to a higher leaf water content, and not to changes in shoot/root allocation. This increased investment in whole plant leaf area partly counteracts the decreased efficiency of photosynthesis at the biochemical level. (7) Plants with decreased Rubisco have a lower intrinsic water use efficiency and contain high levels of inorganic cations and anions. It is proposed that these are a consequence of the increased rate of transpiration, and that the resulting osmotic potential might be a contributory factor to the increased water content and expansion of the leaves. (8) Starch accumulation in source leaves is decreased when unit leaf photosynthesis is reduced, allowing a more efficient use of the fixed carbon. (9) Decreased availability of carbohydrates leads to a down-regulation of nitrate assimilation, acting via a decrease in nitrate reductase activity.  相似文献   

16.
The evolution of growth trajectories: what limits growth rate?   总被引:1,自引:0,他引:1  
According to life‐history theory, growth rates are subject to strong directional selection due to reproductive and survival advantages associated with large adult body size. Yet, growth is commonly observed to occur at rates lower than the maximum that is physiologically possible and intrinsic growth rates often vary among populations. This implies that slower growth is favoured under certain conditions. Realized growth rate is thus the result of a compromise between the costs and advantages of growing rapidly, and the optimal rate of growth is not equivalent to the fundamental maximum rate. The ecological and evolutionary factors influencing growth rate are reviewed, with particular emphasis on how growth might be constrained by direct fitness costs. Costs of accelerating growth might contribute to the variance in fitness that is not attributable to age or size at maturity, as well as to the variation in life‐history strategies observed within and among species. Two main approaches have been taken to study the fitness trade‐offs relating to growth rate. First, environmental manipulations can be used to produce treatment groups with different rates of growth. Second, common garden experiments can be used to compare fitness correlates among populations with different intrinsic growth rates. Data from these studies reveal a number of potential costs for growth over both the short and long term. In order to acquire the energy needed for faster growth, animals must increase food intake. Accordingly, in many taxa, the major constraint on growth rate appears to arise from the trade‐off between predation risk and foraging effort. However, growth rates are also frequently observed to be submaximal in the absence of predation, suggesting that growth trajectories also impact fitness via other channels, such as the reallocation of finite resources between growth and other traits and functions. Despite the prevalence of submaximal growth, even when predators are absent, there is surprisingly little evidence to date demonstrating predator‐independent costs of growth acceleration. Evidence that does exist indicates that such costs may be most apparent under stressful conditions. Future studies should examine more closely the link between patterns of resource allocation to traits in the adult organism and lifetime fitness. Changes in body composition at maturation, for example, may determine the outcome of trade‐offs between reproduction and survival or between early and late reproduction. A number of design issues for studies investigating costs of growth that are imposed over the long term are discussed, along with suggestions for alternative approaches. Despite these issues, identifying costs of growth acceleration may fill a gap in our understanding of life‐history evolution: the relationships between growth rate, the environment, and fitness may contribute substantially to the diversification of life histories in nature.  相似文献   

17.
Galaxias maculatus is one of the world's most widely distributed freshwater fish. This species has a marine-tolerant juvenile phase, and a geographical range extending through much of the southern hemisphere. We conducted phylogeographic analyses of 163 control region haplotypes of G. maculatus, including samples from New Zealand (five locations), Tasmania (one location) and Chile (one location). A lack of genetic structure among New Zealand samples suggests that marine dispersal facilitates considerable gene flow on an intra-continental scale. The discovery of a Tasmanian-like haplotype in one of 144 New Zealand samples indicates that inter-continental marine dispersal occurs but is insufficient to prevent mitochondrial DNA differentiation among continents. The sister relationship of Tasmanian and New Zealand clades implies that marine dispersal is an important biogeographical mechanism for this species. However, a vicariant role in the divergence of eastern and western Pacific G. maculatus cannot be rejected.  相似文献   

18.
With 2285 species of higher plants crammed into 471 km2, the flora of South Africa's Cape Peninsula is exceptionally rich. Similar sized areas in other Mediterranean-climate region biodiversity hot-spots support between 4.7 and 2.7 times fewer species. The high plant species richness of the Cape Peninsula is due to the exceptionally high turnover between moderately species-rich sites in different habitats (beta diversity) and between sites in similar habitats along geographical gradients (gamma diversity). Highest beta diversity, encompassing almost complete turnover, was recorded along soil fertility gradients. Although similar patterns for these independent components explain the richness of other regions in the Cape Floristic Region, it is the very long and steep habitat gradients of the Cape Peninsula that makes this region exceptionally rich. Furthermore, the flora is characterized by a high degree of rarity, a phenomenon that undoubtedly influences the turnover. Future research should focus on developing a biological and ecological understanding of the different forms of rarity and integrating this into management plans for the maintenance of biodiversity.  相似文献   

19.
Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号