首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We present here 1H-detected triple-resonance H/N/C experiments that incorporate CO–CA and CA–CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields 1H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-HN back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.  相似文献   

2.
We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D2O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both 1H and 15N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for 1H–15N correlations in dipolar coupling based experiments for H2O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based 1H–15N correlation experiments yield a nearly constant SNR for samples prepared with ≤30% H2O. Samples in which more H2O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in 1H T 1 in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H2O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H2O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible 1H,1H interactions increases. At low levels of deuteration (≥60% H2O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken α-spectrin SH3 domain.  相似文献   

3.
We investigated if magic angle spinning (MAS) 1H NMR can be used as a tool for detection of liquid-ordered domains (rafts) in membranes. In experiments with the lipids SOPC, DOPC, DPPC, and cholesterol we demonstrated that 1H MAS NMR spectra of liquid-ordered domains (lo) are distinctly different from liquid-disordered (ld) and solid-ordered (so) membrane regions. At a MAS frequency of 10 kHz the methylene proton resonance of hydrocarbon chains in the ld phase has a linewidth of 50 Hz. The corresponding linewidth is 1 kHz for the lo phase and several kHz for the so phase. According to results of 1H NMR dipolar echo spectroscopy, the broadening of MAS resonances in the lo phase results from an increase in effective strength of intramolecular proton dipolar interactions between adjacent methylene groups, most likely because of a lower probability of gauche/trans isomerization in lo. In spectra recorded as a function of temperature, the onset of lo domain (raft) formation is seen as a sudden onset of line broadening. Formation of small domains yielded homogenously broadened resonance lines, whereas large lo domains (diameter >0.3 microm) in an ld environment resulted in superposition of the narrow resonances of the ld phase and the much broader resonances of lo. 1H MAS NMR may be applied to detection of rafts in cell membranes.  相似文献   

4.
Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35–40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD–RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD–RFDR sequences experimentally on a U-13C,15N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD–RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD–RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD–RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD–RFDR experiment is beneficial in a broad range of conditions, including both high and moderate MAS frequencies and magnetic fields.  相似文献   

5.
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.  相似文献   

6.
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the study of membrane proteins in membrane mimetic and native membrane environments. These experiments often suffer from low sensitivity, due in part to the long recycle delays required for magnetization and probe recovery, as well as detection of low gamma nuclei. In ultrafast MAS experiments sensitivity can be enhanced through the use of low power sequences combined with paramagnetically enhanced relaxation times to reduce recycle delays, as well as proton detected experiments. In this work we investigate the sensitivity of 13C and 1H detected experiments applied to 27 kDa membrane proteins reconstituted in lipids and packed in small 1.3 mm MAS NMR rotors. We demonstrate that spin diffusion is sufficient to uniformly distribute paramagnetic relaxation enhancement provided by either covalently bound or dissolved CuEDTA over 7TM alpha helical membrane proteins. Using paramagnetic enhancement and low power decoupling in carbon detected experiments we can recycle experiments ~13 times faster than under traditional conditions. However, due to the small sample volume the overall sensitivity per unit time is still lower than that seen in the 3.2 mm probe. Proton detected experiments, however, showed increased efficiency and it was found that the 1.3 mm probe could achieve sensitivity comparable to that of the 3.2 mm in a given amount of time. This is an attractive prospect for samples of limited quantity, as this allows for a reduction in the amount of protein that needs to be produced without the necessity for increased experimental time.  相似文献   

7.
The auditory sensitivity of the lemur   总被引:1,自引:0,他引:1  
  相似文献   

8.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

9.
The 39 kDa receptor associated protein (RAP) is a modular protein consisting of multiple domains. There has been no x-ray crystal structure of RAP available and the full-length protein does not behave well in a NMR tube. To elucidate the 3D structure of the RAP, we undertook structure determination of individual domains of the RAP. As the first step, here we report the nearly complete assignments of the 1H, 13C and 15N chemical shift signals of domain 1 of the RAP.  相似文献   

10.
TROSY-based triple resonance experiments are essential for protein backbone assignment of large biomolecular systems by solution NMR spectroscopy. In a survey of the current Bruker pulse sequence library for TROSY-based experiments we found that several sequences were plagued by artifacts that affect spectral quality and hamper data analysis. Specifically, these experiments produce sidebands in the 13C(t 1) dimension with inverted phase corresponding to 1HN resonance frequencies, with approximately 5% intensity of the parent 13C crosspeaks. These artifacts originate from the modulation of the 1HN frequency onto the resonance frequency of 13Cα and/or 13Cβ and are due to 180° pulses imperfections used for 1H decoupling during the 13C(t 1) evolution period. These sidebands can become severe for CAi, CAi?1 and/or CBi, CBi?1 correlation experiments such as TROSY-HNCACB. Here, we implement three alternative decoupling strategies that suppress these artifacts and, depending on the scheme employed, boost the sensitivity up to 14% on Bruker spectrometers. A class of comparable Agilent/Varian pulse sequences that use WALTZ16 1H decoupling can also be improved by this method resulting in up to 60–80% increase in sensitivity.  相似文献   

11.
Data about electrical recordings from the tympanic organ of the flour moth, Ephestia kuehniella, to acoustic stimuli is presented. The stimuli had a frequency that ranged from 5 to 100 kHz, with minimal intensities of 40 to 50 db (Odb = 0.0002 dynes/cm2) and maximal up to 110 db. The tympanic organ of E. kuehniella responded in the whole range of frequencies used and showed two sensitivity maxima, one at 20 kHz and the other at 60 kHz. It responded from 45 to 110 db. The electrical activity of the tympanic nerve consisted of a spontaneous discharge of a type B cell and a tonic discharge in response to acoustic stimulation, produced by four acoustic sense cells, called A1, A2, A3, and A4. All these acoustic sense cells respond in the whole frequency range used and they differ in the heights of their action potentials and in their sensitivity to acoustic stimuli. The possible biological significance of hearing in pyralid moths is discussed.  相似文献   

12.
15N n.m.r. (9.12 MHz) spectra of acetamide, polyglycine, poly([l-alanine) and poly(l-leucine) were measured in various acidic solvents. These solvents include dichloroacetic acid (DCA), trifluoroacetic acid (TFA), methane sulphonic acid (MSA) and fluorosulphonic acid (FSA). Full protonation of both amides and polypeptides causes downfield shifts of 17–20 ppm. Furthermore, the concentration dependence of the chemical shift was measured. In solvents which cause partial protonation, decreasing concentration of amide groups may cause downfield shifts up to 8.5 ppm, while in the case of full protonation or in the absence of protonation no concentration dependence is observable. The protonation of peptide groups induces H/D-exchange of the αC proton which was monitored by 1H n.m.r. spectroscopy. The mechanism of this H/D-exchange is discussed.  相似文献   

13.
Site-specific determination of molecular motion and water accessibility by indirect detection of 2H NMR spectra has advantages over dipolar-coupling based techniques due to the large quadrupolar couplings and the ensuing high angular resolution. Recently, a Rotor Echo Short Pulse IRrAdiaTION mediated cross polarization (RESPIRATIONCP) technique was developed, which allowed efficient transfer of 2H magnetization to 13C at moderate 2H radiofrequency field strengths available on most commercial MAS probes. In this work, we investigate the 2H–13C magnetization transfer characteristics of one-bond perdeuterated CD n spin systems and two-bond H/D exchanged C–(O)–D and C–(N)–D spin systems in carbohydrates and proteins. Our results show that multi-bond, broadband 2H–13C polarization transfer can be achieved using 2H radiofrequency fields of ~50 kHz, relatively short contact times of 1.3–1.7 ms, and with sufficiently high sensitivity to enable 2D 2H–13C correlation experiments with undistorted 2H spectra in the indirect dimension. To demonstrate the utility of this 2H–13C technique for studying molecular motion, we show 2H–13C correlation spectra of perdeuterated bacterial cellulose, whose surface glucan chains exhibit a motionally averaged C6 2H quadrupolar coupling that indicates fast trans-gauche isomerization about the C5–C6 bond. In comparison, the interior chains in the microfibril core are fully immobilized. Application of the 2H–13C correlation experiment to H/D exchanged Arabidopsis primary cell walls show that the O–D quadrupolar spectra of the highest polysaccharide peaks can be fit to a two-component model, in which 74% of the spectral intensity, assigned to cellulose, has a near-rigid-limit coupling, while 26% of the intensity, assigned to matrix polysaccharides, has a weakened coupling of 50 kHz. The latter O–D quadrupolar order parameter of 0.22 is significantly smaller than previously reported C–D dipolar order parameters of 0.46–0.55 for pectins, suggesting that additional motions exist at the C–O bonds in the wall polysaccharides. 2H–13C polarization transfer profiles are also compared between statistically deuterated and H/D exchanged GB1.  相似文献   

14.
In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional 13C labeling of OmpX and [13C,1H]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a 1H frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.  相似文献   

15.
We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC??C and 3D C??NCA with sequential 13C acquisitions, 3D NHH and 3D NC??H with sequential 1H acquisitions and 3D CANH and 3D C??NH with broadband 13C?C15N mixing are demonstrated using microcrystalline samples of the ??1 immunoglobulin binding domain of protein G (GB1) and the chicken ??-spectrin SH3 domain.  相似文献   

16.
The characteristics of a Beckman-designed slow acceleration unit for the reorientation of alkaline sucrose gradients in a Ti-15 zonal rotor are described. The large DNA species (> 250S) obtained from cultured rat brain tumor cells with this system sediment linearly with time, have virtually no [3H]leucinelabeled or covalently bonded [3H]choline-labeled material sedimenting with them, sediment independently of smaller single-stranded DNA molecules (? 165S) and are 60–80% degraded by the single-strand-specific S1 nuclease. Therefore, it is postulated that these species are collapsed, partially denatured DNA molecules or a collapsed form of single-stranded DNA. When cells were labeled with [14C]TdR, then frozen and stored at ? 79°C, this system could detect radiation-induced DNA damage from decay of the incorporated label at accumulated doses as small as 18–126 rads.  相似文献   

17.
Several techniques for spectral editing of 2D 13C?C13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N?CCO peaks through 13C?C15N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH2) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other ??-pulse is shifted from the center of a rotor period tr by about 0.15 tr. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled 13C?C1H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via 13C spin exchange. The efficiencies of these spectral editing techniques range from 60?% for the COO and dynamic selection experiments to 25?% for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.  相似文献   

18.
An approach for the design of high-power, broadband 180° pulses and mixing sequences for generating dipolar and scalar coupling mediated 13C–13C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1H decoupling during mixing is presented. Considering RF field strengths in the range of 100–120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here.  相似文献   

19.
Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.  相似文献   

20.
A one-step synthesis of the betulin dipropionate directly from the birch bark without a separate stage of the betulin preparation is described in this paper. Extracts with different content of the betulin dipropionate were shown to form depending on the conditions of acylation of the upper birch bark with propionic acid. The product with the maximum content of the betulin dipropionate was prepared from the starting fraction of 2?C5 mm of the upper birch bark and the fraction of 10?C20 mm that was preliminarily activated with superheated water vapor. The upper bark extract was analyzed by gas chromatography. The structure of betulin dipropionate was confirmed by element analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号