首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-three strains of saturn-spored yeasts were analyzed by means of restriction analysis of the amplified fragment of rDNA which comprised the 5.8S rRNA gene and the internal transcribed spacers ITS1 and ITS2. The use of endonucleases HaeIII and MspI enabled clear differentiation of yeast species Williopsis mucosa, W. salicorniae, Zygowilliopsis californica, Komagataea pratensis, and the Williopsis sensu stricto complex. Minisatellite primer M13 was proposed for the differentiation between twin species of Williopsis sensu stricto, which have identical restriction profiles. PCR with primer M13 enabled reidentification of a number of collection strains, species identification of saturn-spored isolates from the Far East, and detection of three strains affiliated to novel taxa. The latter have unique PCR profiles and differ in the nucleotide sequences of ITS1 and ITS2 fragments of rDNA. Possible variations in the results obtained with different molecular methods are discussed.  相似文献   

2.
Thirty-five yeast strains of the genus Williopsis, analyzed by the polymerase chain reaction with the universal primer N21, were found to belong to two sibling species, W. saturnus and W. suaveolens. Such affiliation of the strains studied agrees well with the results of genetic and physiological investigations.  相似文献   

3.
Fifteen strains of the yeast Williopsis sensu stricto were analyzed by means of UP-PCR. With the N21 universal primer, this approach showed that the strains could be clearly divided into two groups corresponding to the species W. saturnus (Kl?cker) Zender and W. beijerinckii (van der Walt) Naumov et Vustin. The results obtained are in good agreement with data of genetic and isoenzyme analyses and provide no support for the conspecificity of W. saturnus and W. beijerinckii commonly accepted in modern determination manuals.  相似文献   

4.
Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis , which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1α. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia . Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera . Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces . Lineages previously classified as varieties of Pichia kluyveri , ' Issatchenkia ' scutulata, Starmera amethionina and ' Williopsis ' saturnus are elevated to species rank based on sequence comparisons.  相似文献   

5.
Yeast strains belonging to the genera Candida and Hansenula were shown to differ in their susceptibility to the action of protein antibiotics produced by the yeasts Williopsis and Zygowilliopsis. This finding can be used as an additional criterion for yeast identification.  相似文献   

6.
We used polymerase chain reaction with universal and microsatellite primers, and molecular karyotyping to evaluate the extent of divergence between the genomes of the yeasts currently assigned to the heterogeneous genus Williopsis. Pulsed-field gel electrophoresis of chromosomal DNAs indicates that Zygowilliopsis californica, Komagataea pratensis, Williopsis mucosa, Williopsis salicorniae species and Williopsis sensu stricto complex have clearly different karyotypes. In contrast, the latter six species, Williopsis saturnus, W. beijerinckii, W mrakii, W. suaveolens, W. subsufficiens and W. sargentensis, show similar banding patterns and practically cannot be differentiated on the basis of their karyotypes. The data revealed that a PCR method employing the universal primer N21 is appropriate for the distinction of Williopsis, Zygowilliopsis and Komagataea yeasts. Unique fingerprints were generated with this primer for all 10 species studied while strains of the same species showed nearly identical profiles. The data of UP-PCR are in good agreement with genetic classification and provide support for the species status of the yeasts composing the Williopsis sensu stricto complex. Microsatellite primer (GTG)5 allowing molecular typing of individual strains of the same species may be useful for investigating population structure of the saturn-spored yeasts.  相似文献   

7.
Some marine yeasts have recently been recognised as pathogenic agents in crab mariculture, but may be inhibited or killed by 'killer' yeast strains. We screened multiple yeast strains from seawater, sediments, mud of salterns, guts of marine fish, and marine algae for killer activity against the yeast Metchnikowia bicuspidata WCY (pathogenic to crab Portunus trituberculatus), and found 17 strains which could secrete toxin onto the medium and kill the pathogenic yeast. Of these, 5 strains had significantly higher killing activity than the others; routine identification and molecular methods showed that these were Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1 and Aureobasidium pullulans HN2.3. We found that the optimal conditions for killer toxin production and action of killer toxin produced by the marine killer yeasts were not all in agreement with those of marine environments and for crab cultivation. We found that the killer toxins produced by the killer yeast strains could kill other yeasts in addition to the pathogenic yeast, and NaCl concentration in the medium could change killing activity spectra. All the crude killer toxins produced could hydrolyze laminarin and the hydrolysis end products were monosaccharides.  相似文献   

8.
In most yeast species, the mitochondrial DNA (mtDNA) has been reported to be a circular molecule. However, two cases of linear mtDNA with specific termini have previously been described. We examined the frequency of occurrence of linear forms of mtDNA among yeasts by pulsed-field gel electrophoresis. Among the 58 species from the genera Pichia and Williopsis that we examined, linear mtDNA was found with unexpectedly high frequency. Thirteen species contained a linear mtDNA, as confirmed by restriction mapping, and labeling, and electron microscopy. The mtDNAs from Pichia pijperi, Williopsis mrakii, and P. jadinii were studied in detail. In each case, the left and right terminal fragments shared homologous sequences. Between the terminal repeats, the order of mitochondrial genes was the same in all of the linear mtDNAs examined, despite a large variation of the genome size. This constancy of gene order is in contrast with the great variation of gene arrangement in circular mitochondrial genomes of yeasts. The coding sequences determined on several genes were highly homologous to those of the circular mtDNAs, suggesting that these two forms of mtDNA are not of distant origins.  相似文献   

9.
The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs.  相似文献   

10.
After reevaluation of the taxonomic position of 27 yeast collection strains of different origin by UP-PCR followed by dot-hybridization, only 22 strains were assigned to the biological species Zygowilliopsis californica (Lodder) Kudriavzev. Four strains were identified as Williopsis suaveolens (Kl?cker) Naumov et al. Universal primers L45 and N21 are recommended for identification of the Z. californica yeasts.  相似文献   

11.
The taxonomic structure of yeast communities was studied in forest litter and soil, as well as in substrates transformed by the activity of Lumbricus terrestris earthworms (tree waste from the hole mouths, the gut contents, and coproliths). The activity of L. terrestris has a weak effect on the total yeast abundance but results in substantial changes in their taxonomic composition. The share of ascomycetous yeasts is significantly higher in the substrates associated with the activity of earthworms. The teleomorphic ascomycetes Williopsis saturnus were isolated from the gut contents. The effect of earthworms on the composition of the yeast community in the process of forest litter destruction is more markedly pronounced than seasonal changes.  相似文献   

12.
Aung  Ma Thandar  Lee  Pin-Rou  Yu  Bin  Liu  Shao-Quan 《Annals of microbiology》2015,65(2):921-928
Williopsis saturnus var. subsufficiens NCYC 2728, W. saturnus var. saturnus NCYC 22 and W. saturnus var. mrakii NCYC 500 were used to carry out cider fermentation to assess their impact on the volatile composition of cider. The changes of yeast cell population, °Brix and pH were similar among the three yeasts. Strain NCYC 500 grew best, with the highest cell population of 1.14 × 108 CFU ml−1, followed by strains NCYC 2728 and NCYC 22 (8 × 107 CFU ml−1 and 3.19 × 107 CFU ml−1 respectively). Esters were the most abundant volatiles produced, followed by alcohols. Among the esters, ethyl acetate, 2-phenylethyl acetate, isoamyl acetate, cis-3-hexenyl acetate and hexyl acetate were the major volatiles. The major alcohols were ethanol, isoamyl alcohol, 2-phenylethyl alcohol and isobutyl alcohol. The three Williopsis yeasts transformed volatile compounds during cider fermentation with significant variations in terms of volatile production and degradation. This study implied that fermentation with Williopsis yeasts could result in cider with a more complex yet fruity aroma.  相似文献   

13.
Interactions between killer yeasts and pathogenic fungi   总被引:4,自引:0,他引:4  
Abstract A total of 17 presumptive killer yeast strains were tested in vitro for growth inhibitory and killing activity against a range of fungal pathogens of agronomic, environmental and clinical significance. Several yeasts were identified which displayed significant activity against important pathogenic fungi. For example, isolates of the opportunistic human pathogen, Candida albicans , were generally very sensitive to Williopsis mrakii killer yeast activity, whilst killer strains of Saccharomyces cerevisiae and Pichia anomala markedly inhibited the growth of certain wood decay basidiomycetes and plant pathogenic fungi. Results indicate that such yeasts, together with their killer toxins, may have potential as novel antimycotic biocontrol agents.  相似文献   

14.
The taxonomic structure of yeast communities was studied in forest litter and soil, as well as in substrates transformed by the activity of Lumbricus terrestris earthworms (leaves in heaps, the gut contents, and coproliths). The activity of L. terrestris has a weak effect on the total yeast abundance but results in substantial changes in the community taxonomic composition. The share of ascomycetous yeasts is significantly higher in the substrates associated with the activity of earthworms. The teleomorphic ascomycetes Williopsis saturnus were isolated from the gut contents. The effect of earthworms on the composition of the yeast community in the process of forest litter destruction is more pronounced than seasonal changes.  相似文献   

15.
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides.The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear ((15)N) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel.This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action.  相似文献   

16.
Killer strains were looked for among certain yeast species belonging to five spore-forming genera (Hansenula, Pichia, Kluyveromyces, Williopsis and Zygowilliopsis) and one imperfect genus (Candida). 171 killers were found among 272 strains, and many of them had a high activity and a broad action spectrum. These as well as S. cerevisiae K1 and K2 killers (173 killers all in ail) were classified according to differences in their activity and the spectra of action on susceptible strains. Thirty-four groups belonging to 13 classes were isolated.  相似文献   

17.
In the Iberian Pyrite Belt (IPB), acid rock drainage gives rise to aquatic habitats with low pH and high concentrations of heavy metals, a situation that causes important environmental problems. We investigated the occurrence and diversity of yeasts in two localities of the IPB: São Domingos (Portugal) and Rio Tinto (Spain). Yeast isolation was performed on conventional culture media (MYP), acidified (pH 3) media (MYP3), and on media prepared with water from the study sites (MYPw). The main goal of the study was to determine the structure of the yeast community; a combination of molecular methods was used for accurate species identifications. Our results showed that the largest fraction of the yeast community was recovered on MYPw rather than on MYP and MYP3. Twenty-seven yeast species were detected, 48% of which might represent undescribed taxa. Among these, an undescribed species of the genus Cryptococcus required low pH for growth, a property that has not been observed before in yeasts. The communities of S. Domingos and R. Tinto showed a considerable resemblance, and eight yeast species were simultaneously found in both localities. Taking into consideration the physicochemical parameters studied, we propose a hierarchic organization of the yeast community in terms of high-, intermediate-, or low-stress conditions of the environment. According to this ranking, the acidophile yeast Cryptococcus sp. 5 is considered the most tolerant species, followed by Cryptococcus sp. 3 and Lecytophora sp. Species occurring in situations of intermediate environmental stress were Candida fluviatilis, Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts belonging to Rhodotorula and Cryptococcus.  相似文献   

18.
As the killer toxin produced by Williopsis saturnus WC91-2 could kill many sensitive yeast strains, including the pathogenic ones, the extracellular killer toxin in the supernatant of cell culture of the marine yeast strain was purified and characterized. The molecular mass of the purified killer toxin was estimated to be 11.0kDa according to the data from SDS-PAGE. The purified killer toxin had killing activity, but could not hydrolyze laminarin. The optimal conditions for action of the purified killer toxin against the pathogenic yeast Metschnikowia bicuspidate WCY were the assay medium with 10% NaCl, pH 3-3.5 and temperature 16°C. The gene encoding the killer toxin from the marine killer yeast WC91-2 was cloned and the ORF of the gene was 378bp. The deduced protein from the cloned gene encoding the killer toxin had 125 amino acids with calculated molecular weight of 11.6kDa. It was also found that the N-terminal amino acid sequence of the purified killer toxin had the same corresponding sequence deduced from the cloned killer toxin gene in this marine yeast, confirming that the purified killer toxin was indeed encoded by the cloned gene.  相似文献   

19.
Tokareva  N. G.  Naumova  E. S.  Bab'eva  I. P.  Naumov  G. I. 《Microbiology》2001,70(5):576-582
After reevaluation of the taxonomic position of 27 yeast collection strains of different origin by UP-PCR followed by dot-hybridization, only 22 strains were assigned to the biological species Zygowilliopsis californica(Lodder) Kudriavzev. Four strains were identified as Williopsis suaveolens(Klöcker) Naumov et al. Universal primers L45 and N21 are recommended for identification of the Z. californicayeasts.  相似文献   

20.
Killer toxin-neutralizing monoclonal antibody (nmAb-KT) against HM-1 killer toxin (HM-1) produced by yeast Williopsis saturnus var. mrakii IFO 0895 reduces both the killing and glucan synthase inhibitory activity of HM-1. nmAb-KT is classified as IgG1kappa and has been shown to be ineffective against HYI killer toxin produced by the related yeast W. saturnus var. saturnus IFO 0117. To determine the epitope for nmAb-KT, overlapping peptides were synthesized from the primary structure of HM-1. nmAb-KT reacted with peptides P5 (33NVHWMVTGGST43), P6 (39TGGSTDGKQG48) and P7 (44DGKQGCATIWEGS56), which represent the middle region of the HM-1 sequence. P6 reacted most strongly with nmAb-KT. Combined analysis by immunoblotting, surface plasmon resonance (SPR) analysis and yeast growth inhibition assay showed that nmAb-KT recognizes a specific epitope within peptide P6. The K(d) value of nmAb-KT against HM-1 and P6 were determined to be 5.48 x 10(-9) M and 1.47 x 10(-6) M by SPR analysis, respectively. These results strongly indicate that nmAb-KT binds to HM-1 at the sequence 41GSTDGK46, and not to HYI at the same position. The potential active site of HM-1 involved in the killing activity against sensitive yeast is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号