首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell-permeable inhibitors of type 1 and 2A protein phosphatases, okadaic acid and calyculin-A, induced a redistribution of protein kinase C (PKC) activity and immunoreactivity (40 to 60%) from cytosol to membrane in some cell types. Calyculin-A was 100-fold more potent than okadaic acid and required only 5 to 10 nM concentrations to induce this PKC translocation. The concentration of these agents required to induce the redistribution of PKC correlated with the potency of these agents to inhibit both type 1 and 2A protein phosphatases. There was a lag period of 15 to 30 min before the onset of PKC translocation, as this process might have been induced by indirect cellular events triggered by inhibitions of protein phosphatases (1 and 2A). Taken together these results suggest that although the okadaic acid class of tumor promoters and phorbol ester-related agents bind to two different cellular receptors having counteracting enzymic activities, they share a common mechanism of action, namely the induction of cytosol to membrane translocation of PKC.  相似文献   

2.
3.
The vimentin contents of four mammalian cell lines originating from rat and human tissues were determined by immunoblotting and scanning densitometry. On per cell volume basis, vimentin content in 9L, KD, and HeLa cells was found to be 206.6, 151.6, and 19.1 ng/μl, respectively. A431 cells were devoid of vimentin. Protein phosphorylation was augmented by treatment of 600 nM okadaic acid for 1 h in these cells. During the apparent activation of protein kinases, vimentin became hyperphosphorylated and the phosphorylation level of other nonvimentin phosphoproteins was relatively little affected in 9L and KD cells. In contrast, cytokeratins and other nonvimentin proteins were heavily phosphorylated in OA-treated HeLa and A431 cells. Regression analysis indicated that the relative increase in phosphorylation level of nonvimentin phosphoproteins was inversely correlated to the contents of vimentin in the four cell lines [r2 = ?0.985]. These observations strongly suggest that vimentin acts as a phosphate sink by which the effects of “excess kinase activity” inflicted by phosphatases inhibition was attenuated.  相似文献   

4.
5.
Sulfatide (cerebroside sulfate) activated protein kinase C to the same extent as phosphatidylserine did with the tumor promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA), teleocidin and debromoaplysiatoxin. Sulfatide and phosphatidylserine both induced specific binding of [3H]TPA to protein kinase C, although the ratios of specific to non-specific [3H]TPA binding to protein kinase C with the two were not the same. It is concluded that sulfatide is involved in activation of protein kinase C by tumor promoters in a slightly different way from phosphatidylserine.  相似文献   

6.
Human T lymphocyte activation by tumor promoters: role of protein kinase C   总被引:6,自引:0,他引:6  
Protein kinase C (PKC) has a major role in a ligand-receptor-mediated signal transduction system in a variety of cell types including T lymphocytes. One of the early phenotypic changes associated with T cell activation is the expression of cell surface receptors for interleukin 2 (IL 2). To test the role of PKC in regulation of IL 2 receptor (IL 2-R) expression and T cell activation in general, we used tumor promoters (TP) as modulators of PKC and compared their effects on intact human T cells and on the enzymatic activity of T cell-derived PKC in a cellfree system. In T cells, the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced IL 2-R expression and proliferation associated with cytosol-to-membrane PKC translocation. A dose of TPA (1 to 4 ng/ml) that induced about 50% of the maximal activation of PKC in the enzymatic assay also induced half-maximal effects on cell proliferation, IL 2-R expression, and PKC redistribution in intact T cells. Structure-function studies with several phorbol ester analogs and non-phorbol ester TP directly correlated tumor promotion activity with the ability to activate PKC and induce IL 2-R. An inhibitor of PKC, chlorpromazine, was found to suppress TPA-mediated proliferation and IL 2-R expression, and inhibited T cell-derived PKC by competing with the phospholipid. Ca2+ ionophore, which synergizes with TPA in induction of T cell proliferation, facilitated the TPA-induced PKC translocation to the membrane. The results thus demonstrate a direct correlation between the effects of various chemicals on: subcellular redistribution of PKC in T cells; induction of T cell proliferation and IL 2-R expression; and activation of T cell-derived PKC in vitro. These data provide further support for the role of PKC in transduction of activation signals in T cells and in regulation of IL 2-R expression.  相似文献   

7.
R R Rando  Y Kishi 《Biochemistry》1992,31(8):2211-2218
Protein kinase C is a ubiquitous and important regulatory enzyme. The enzyme is physiologically activated in a temporary manner by (S)-diacylglycerols (DAGs), which are themselves generated by the phospholipase C mediated hydrolysis of polyphosphoinositides. The (S)-DAGs specifically bind to the regulatory domain of PKC and cause the activation of the PKC toward substrate. Minor modifications in the DAG result in inactive molecules. On the other hand, the structurally diverse, polycyclic tumor promoters also specifically activate PKC by binding to the same effector site as do the DAGs. The object of this paper is to present a discrete structural model that accounts for the activation of PKC by both the tumor promoters and the DAGs. The unique model presented is based on experimentation rather than on computer-driven hypotheses which, experience has shown, generally produce incorrect structural models when applied to PKC. The model described here begins with a structural analysis of the tumor-promoting debromoaplysiatoxins (DATs). DAT is an ideal starting molecule, because it is conformationally rigid with a known relative and absolute configuration, and it is synthetically manipulable. The pharmacophore of DAT was experimentally determined, and this pharmacophore serves as a template for further analyses. This template is used to predict the active conformer of the acylic DAGs; this conformer is then used to reveal the pharmacophore of various families of tumor promoters. The overall model presented is consistent with published structure-activity studies on the tumor promoters and makes testable predictions that have proven to be correct thus far.  相似文献   

8.
Okadaic acid (OA), a specific inhibitor of protein phosphatases, induces a rapid activation (30 min) of MPF when microinjected into the Xenopus oocyte. Neither protein synthesis inhibitors nor cAMP counteract the action of OA. These results indicate that the inhibition of protein phosphatase(s) is sufficient for the in vivo activation of MPF even after the full activation of cAMP-dependent protein kinase. In all experimental conditions (plus or minus inhibitors of protein synthesis; normal or elevated cAMP levels) OA induces a burst of protein phosphorylation together with the activation of MPF. Cytological analysis shows that OA provokes the breakdown of the nuclear envelope, the depolymerization of lamin and the condensation of the chromosomes. However, no metaphase spindles are organized, indicating that inhibition of protein phosphatases strongly affects the function of the microtubule organizing center.  相似文献   

9.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

10.
Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.  相似文献   

11.
We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Organization of intermediate filament, a major component of cytoskeleton, is regulated by protein phosphorylation/dephosphorylation, which is a dynamic process governed by a balance between the activities of involved protein kinases and phosphatases. Blocking dephosphorylation by protein phosphatase inhibitors such as okadaic acid (OA) leads to an apparent activation of protein kinase(s) and to genuine activation of phosphatase-regulated protein kinase(s). Treatment of 9L rat brain tumor cells with OA results in a drastically increased phosphorylation of vimentin, an intermediate filament protein. In-gel renaturing assays and in vitro kinase assays using vimentin as the exogenous substrate indicate that certain protein kinase(s) is activated in OA-treated cells. With specific protein kinase inhibitors, we show the possible involvement of the cdc2 kinase- and p38 mitogen-activated protein kinase (p38MAPK)-mediated pathways in this process. Subsequent in vitro assays demonstrate that vimentin may serve as an excellent substrate for MAPK-activated protein kinase-2 (MAPKAPK-2), the downstream effector of p38MAPK, and that MAPKAPK-2 is activated with OA treatment. Comparative analysis of tryptic phosphopeptide maps also indicates that corresponding phosphopeptides emerged in vimentin from OA-treated cells and were phosphorylated by MAPKAPK-2. Taken together, the results clearly demonstrate that MAPKAPK-2 may function as a vimentin kinase in vitro and in vivo. These findings shed new light on the possible involvement of the p38MAPK signaling cascade, via MAPKAPK-2, in the maintenance of integrity and possible physiological regulation of intermediate filaments. J. Cell. Biochem. 71:169–181, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
This paper reports on a potential physiological target of okadaic acid (OA), the toxin metabolite responsible for shellfish poisoning and, consequently, human intoxication. OA is a potent promoter of tumor activity, most likely by inhibiting protein phosphatase 1 and 2A (Adv. Cancer. Res. 61 (1993) 143). However, all of its cellular targets have not yet been characterized. The interaction of OA with alkaline phosphatase (ALP) has been investigated in view of its protein phosphatase inhibition activity. Kinetic analysis of ALP from Escherichia coli, human placental and calf intestinal ALP has shown that OA acts as a non-competitive inhibitor of ALP. The bacterial enzyme displays a higher affinity for OA (K(i) 360 nM) than the eukaryotic proteins (human placental ALP, K(i) 2.05 microM; calf intestinal ALP, K(i) 3.15 microM). The inhibition by OA suggests a putative role of ALP in the phosphorylation status, through regulation of the phosphorylation/dephosphorylation equilibrium of proteins with phosphoseryl or phosphothreonyl residues.  相似文献   

15.
16.
Okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, induces differentiation in human MCF-7, AU-565, and MB-231 breast tumor cells. In MCF-7 cells, OA elicited within 5 min an increase in the levels of a set of phosphorylated cellular proteins, within hours expression of the early response genes junB, c-jun, and c-fos, and within days manifestation of differentiation. Differentiation was also induced by two related protein phosphatase inhibitors, but not by an inactive OA derivative or by an inhibitor that penetrates epithelial cells poorly. These results indicate that OA and related agents can induce tumor breast cell differentiation, and this induction is correlated with their ability to inhibit PPH 1 and 2A.  相似文献   

17.
A promoter of the nuclear proto-oncogene fos was activated by cotransfection with the viral src gene. Ability to transactivate the c-fos promoter was dependent on tyrosine kinase activity, because (i) src mutants which have reduced tyrosine kinase activity due to mutation of Tyr-416 to Phe showed lower promoter activation, (ii) pp60c-src mutants which have increased tyrosine kinase activity due to mutation of Tyr-527 to Phe also augmented c-fos promoter induction, and (iii) mutation in the ATP-binding site of pp60v-src strongly suppressed c-fos promoter activation. Tyrosine kinase activity alone, however, was not sufficient for promoter activation, because of pp60v-src mutant which lacked its myristylation site and consequently membrane association showed no increased c-fos promoter activation. Both the tyrosine kinase- and membrane-association-defective mutants were also unable to induce transformation. Therefore, phosphorylation of membrane-associated substrates appears to be required for both gene expression and cellular transformation by the src protein. Two regions of the c-fos promoter located between positions -362 and -324 and positions -323 and -294 were responsive to src stimulation. We believe that protein tyrosine phosphorylation represents an important step of signal transduction from the membrane to the nucleus.  相似文献   

18.
19.
Based on the literature data, a systematic comparison of relationships between the structures of incomplete and complete phorbol tumor promoters, diacylglycerols and their activities in various biological test-systems was carried out. The specific features of the phorbol esters-protein kinase C complexes responsible for the induction of the first and second stages of the tumor promotion in mouse skin, were established. The type of diacylglycerol binding to protein kinase C which confers to the latter noncarcinogenic properties, was specified.  相似文献   

20.
cAMP-dependent protein kinases have been characterized in parietal cells isolated from rabbit gastric mucosa. Both Type I and Type II cAMP-dependent protein kinase isozymes are present in these cells. Type II isozymes were detected in 900, 14,000, and 100,000 X g particulate fractions as well as 100,000 X g cytosolic fractions; Type I isozymes were found predominately in the cytosolic fraction. When parietal cells were stimulated with histamine, an agent that elevates intracellular cAMP content and initiates parietal cell HCl secretion, cAMP-dependent protein kinase activity was increased in homogenates of these cells as measured by an increase in the cAMP-dependent protein kinase activity ratio. Histamine activation of cAMP-dependent protein kinase was correlated with parietal cell acid secretory responses which were measured indirectly as increased cellular uptake of the weak base, [14C]aminopyrine. These results suggest that cAMP-dependent protein kinase(s) is involved in the control of parietal cell HCl secretion. The parietal cell response to histamine may be compartmentalized because histamine appears to activate only a cytosolic Type I cAMP-dependent protein kinase isozyme, as determined by three different techniques including 1) ion exchange chromatography; 2) Sephadex G-25 to remove cAMP and allow rapid reassociation of the Type II but not the Type I isozyme; and 3) 8-azido-[32P]cAMP photoaffinity labeling. Forskolin, an agent that directly stimulates adenylate cyclases, was found to activate both the Type I and Type II isozymes. Several cAMP-dependent protein kinases were also detected in parietal cell homogenates, including a Ca2+-phospholipid-sensitive or C kinase and two casein kinases which were tentatively identified as casein kinase I and II. At least two additional protein kinases with a preference for serine or lysine-rich histones, respectively, were also detected. The function of these enzymes in parietal cells remains to be shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号