首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
The hallmark of the annexin super family of proteins is Ca(2+)-dependent binding to phospholipid bilayers, a property that resides in the conserved core domain of these proteins. Despite the structural similarity between the core domains, studies reported herein showed that annexins A1, A2, A5, and B12 could be divided into two groups with distinctively different Ca(2+)-dependent membrane-binding properties. The division correlates with the ability of the annexins to form Ca(2+)-dependent membrane-bound trimers. Site-directed spin-labeling and Forster resonance energy transfer experimental approaches confirmed the well-known ability of annexins A5 and B12 to form trimers, but neither method detected self-association of annexin A1 or A2 on bilayers. Studies of chimeras in which the N-terminal and core domains of annexins A2 and A5 were swapped showed that trimer formation was mediated by the core domain. The trimer-forming annexin A5 and B12 group had the following Ca(2+)-dependent membrane-binding properties: (1) high Ca(2+) stoichiometry for membrane binding ( approximately 12 mol of Ca(2+)/mol of protein); (2) binding to membranes was very exothermic (> -60 kcal/ mol of protein); and (3) binding to bilayers that were in the liquid-crystal phase but not to bilayers in the gel phase. In contrast, the nontrimer-forming annexin A1 and A2 group had the following Ca(2+)-dependent membrane-binding properties: (1) lower Ca(2+) stoichiometry for membrane binding (相似文献   

2.
Annexins are proteins that bind lipids in the presence of calcium. Though multiple functions have been proposed for annexins, there is no general agreement on what annexins do or how they do it. We have used the well-studied conductance probes nonactin, alamethicin, and tetraphenylborate to investigate how annexins alter the functional properties of planar lipid bilayers. We found that annexin XII reduces the nonactin-induced conductance to approximately 30% of its original value. Both negative lipid and approximately 30 microM Ca(2+) are required for the conductance reduction. The mutant annexin XIIs, E105K and E105K/K68A, do not reduce the nonactin conductance even though both bind to the membrane just as wild-type does. Thus, subtle changes in the interaction of annexins with the membrane seem to be important. Annexin V also reduces nonactin conductance in nearly the same manner as annexin XII. Pronase in the absence of annexin had no effect on the nonactin conductance. But when added to the side of the bilayer opposite that to which annexin was added, pronase increased the nonactin-induced conductance toward its pre-annexin value. Annexins also dramatically alter the conductance induced by a radically different probe, alamethicin. When added to the same side of the bilayer as alamethicin, annexin has virtually no effect, but when added trans to the alamethicin, annexin dramatically reduces the asymmetry of the I-V curve and greatly slows the kinetics of one branch of the curve without altering those of the other. Annexin also reduces the rate at which the hydrophobic anion, tetraphenylborate, crosses the bilayer. These results suggest that annexin greatly reduces the ability of small molecules to cross the membrane without altering the surface potential and that at least some fraction of the active annexin is accessible to pronase digestion from the opposite side of the membrane.  相似文献   

3.
Annexins are a family of proteins generally described as Ca(2+)-dependent for phospholipid binding. Yet, annexins have a wide variety of binding behaviors and conformational states, some of which are lipid-dependent and Ca(2+)-independent. We present a model that captures the cation and phospholipid binding behavior of the highly conserved core of the annexins. Experimental data for annexins A4 and A5, which have short N-termini, were globally modeled to gain an understanding of how the lipid-binding affinity of the conserved protein core is modulated. Analysis of the binding behavior was achieved through use of the lanthanide Tb(3+) as a Ca(2+) analogue. Binding isotherms were determined experimentally from the quenching of the intrinsic fluorescence of annexins A4 and A5 by Tb(3+) in the presence or absence of membranes. In the presence of lipid, the affinity of annexin for cation increases, and the binding isotherms change from hyperbolic to weakly sigmoidal. This behavior was modeled by isotherms derived from microscopic binding partition functions. The change from hyperbolic to sigmoidal binding occurs because of an allosteric transition from the annexin solution state to its membrane-associated state. Protein binding to lipid bilayers renders cation binding by annexins cooperative. The two annexin states denote two affinities of the protein for cation, one in the absence and another in the presence of membrane. In the framework of this model, we discuss membrane binding as well as the influence of the N-terminus in modifying the annexin cation-binding affinity by changing the probability of the protein to undergo the postulated two-state transition.  相似文献   

4.
Vascular anticoagulant alpha (VAC alpha, annexin V) is a member of the family of calcium and phospholipid binding proteins, the annexins. The binding properties of VAC alpha to phospholipid bilayers were studied by ellipsometry. Adsorption was calcium-dependent and completely reversible upon calcium depletion. Half-maximal adsorptions to phospholipid bilayers consisting of 100, 20, 5, and 1% dioleoyl-phosphatidylserine (DOPS) supplemented with dioleoyl-phosphatidylcholine (DOPC) were reached at Ca2+ concentrations of 0.04, 0.22, 1.5, and 8.6 mM. These surfaces all showed the same maximal adsorption of 0.22 +/- 0.01 micrograms of VAC alpha/cm2 (mean +/- S.D.). The adsorption to bilayers containing more than 10% DOPS was independent of VAC alpha concentrations in the range of 0.5-100 nM. Dissociation constants for VAC alpha binding to these surfaces were estimated to be below 2 x 10(-10) M. No adsorption was observed on pure DOPC bilayers at a Ca2+ concentration of 3 mM. The ability to mediate VAC alpha binding to 20% DOPS/80% DOPC bilayers was highly specific for Ca2+. The use of other divalent cations resulted in decreased binding in the order Cd2+ greater than Zn2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Zinc ions had a synergistic effect on Ca2(+)-dependent VAC alpha binding. The Ca2+ concentration needed for half-maximal binding to cardiolipin, dioleoyl-phosphatidylglycerol, DOPS, phosphatidylinositol, phosphatidic acid, dioleoyl-phosphatidylethanolamine, and sphingomyelin increased in that order. Adsorption was independent of the overall surface charge of the phospholipid membrane.  相似文献   

5.
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.  相似文献   

6.
Annexins are soluble proteins that are best known for their ability to undergo reversible Ca(2+)-dependent binding to the surface of phospholipid bilayers. Recent studies, however, have shown that annexins also reversibly bind to membranes in a Ca(2+)-independent manner at mildly acidic pH. We investigated the structural changes that occur upon pH-dependent membrane binding by performing a nitroxide scan on the helical hairpin encompassing helices A and B in the fourth repeat of annexin B12. Residues 251-273 of annexin B12 were replaced, one at a time, with cysteine and then labeled with a nitroxide spin label. Electron paramagnetic resonance (EPR) mobility and accessibility analyses of soluble annexin B12 derivatives were in excellent agreement with the known crystal structure of annexin B12. However, EPR studies of annexin B12 derivatives bound to membranes at pH 4.0 indicated major structural changes in the scanned region. The helix-loop-helix structure present in the soluble protein was converted into a continuous transmembrane alpha-helix that was exposed to the hydrophobic core of the bilayer on one side and exposed to an aqueous pore on the other side. Asp-264 was on the hydrophobic membrane-exposed face of the amphipathic transmembrane helix, thereby suggesting that protonation of its carboxylate group stabilized the transmembrane form. Inspection of the amino acid sequence of annexin B12 revealed several other helical hairpin regions that might refold and form continuous amphipathic transmembrane helices in response to protonation of Asp or Glu switch residues on or near the hydrophobic face of the helix.  相似文献   

7.
To identify lung lamellar body (LB)-binding proteins, the fractions binding to LB-Sepharose 4B in a Ca(2+)-dependent manner from the lung soluble fractions were analyzed with Mono Q column. Four annexins (annexins III, IV, V, and VIII) were identified by partial amino acid sequence analyses as the LB-binding proteins in the lung soluble fractions. A control experiment using phospholipid (phosphatidylserine/phosphatidylglycerol/phosphtidylcholine) liposome-Sepharose 4B revealed that annexins III, IV and V were the Ca(2+)-dependent proteins binding to the column in the lung soluble fractions, while annexin VIII was not detected. Thus, annexin VIII might preferentially bind to LB. On the other hand, the only Ca(2+)-dependent LB-binding protein identified in the bronchoalveolar lavage fluids was annexin V. It was further demonstrated that annexin V was secreted by isolated alveolar type II cells from rats and that the secretion was stimulated by the addition of phorbol ester (PMA), a potent stimulator of surfactant secretion. The PMA-dependent stimulation of annexin V was attenuated by preincubation with surfactant protein-A (SP-A), a potent inhibitor of surfactant secretion. As LB is thought to be an intracellular store of pulmonary surfactant, which is secreted by alveolar type II cells, annexin V is likely to be secreted together with the lamellar body.  相似文献   

8.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

9.
The distribution of annexin V isoforms (CaBP33 and CaBP37) and of annexin VI in bovine lung, heart, and brain subfractions was investigated with special reference to the fractions of these proteins which are membrane-bound. In addition to EGTA-extractable pools of the above proteins, membranes from lung, heart, and brain contain EGTA-resistant annexins V and VI which can be solubilized with detergents (Triton X-100 or Triton X-114). A strong base like Na2CO3, which is usually effective in extracting membrane proteins, only partially solubilizes the membrane-bound, EGTA-resistant annexins analyzed here. Also, only 50-60% of the Triton X-114-soluble annexins partition in the aqueous phase, the remaining fractions being recovered in the detergent-rich phase. Altogether, these findings suggest that, by an as yet unknown mechanism, following Ca(2+)-dependent association of annexin V isoforms and annexin VI with membranes, substantial fractions of these proteins remain bound to membranes in a Ca(2+)-independent way and behave like integral membrane proteins. These results further support the possibility that the above annexins might play a role in membrane trafficking and/or in the regulation of the structural organization of membranes.  相似文献   

10.
The interactions of two plant annexins, annexin 24(Ca32) from Capsicum annuum and annexin Gh1 from Gossypium hirsutum, with phospholipid membranes have been characterized using liposome-based assays and adsorption to monolayers. These two plant annexins show a preference for phosphatidylserine-containing membranes and display a membrane binding behavior with a half-maximum calcium concentration in the sub-millimolar range. Surprisingly, the two plant annexins also display calcium-independent membrane binding at levels of 10-20% at neutral pH. This binding is regulated by three conserved surface-exposed residues on the convex side of the proteins that play a pivotal role in membrane binding. Due to quantitative differences in the membrane binding behavior of N-terminally His-tagged and wild-type annexin 24(Ca32), we conclude that the N-terminal domain of plant annexins plays an important role, reminiscent of the findings in their mammalian counterparts. Experiments elucidating plant annexin-mediated membrane aggregation and fusion, as well as the effect of these proteins on membrane surface hydrophobicity, agree with findings from the membrane binding experiments. Results from electron microscopy reveal elongated rodlike assemblies of plant annexins in the membrane-bound state. It is possible that these structures consist of protein molecules directly interacting with the membrane surface and molecules that are membrane-associated but not in direct contact with the phospholipids. The rodlike structures would also agree with the complex data from intrinsic protein fluorescence. The tubular lipid extensions suggest a role in the membrane cytoskeleton scaffolding or exocytotic processes. Overall, this study demonstrates the importance of subtle changes in an otherwise conserved annexin fold where these two plant annexins possess distinct modalities compared to mammalian and other nonplant annexins.  相似文献   

11.
Annexin A4 belongs to a class of Ca(2+)-binding proteins for which different functions in the cell have proposed, e.g. involvement in exocytosis and in the coagulation process. All these functions are related to the ability of the annexins to bind to acidic phospholipids. In this study the interaction of annexin A4 with large unilamellar vesicles (LUV) prepared from phosphatidylserine (PS) or from phosphatidic acid (PA) is investigated at neutral and acidic pH. Annexin A4 strongly binds to either lipid at acidic pH, whereas at neutral pH only weak binding to PA and no binding to PS occurs. Addition of 40 microM Ca(2+) leads to a strong binding to the lipids also at neutral pH. This is caused by the different electric charge of the protein below and above its isoelectric point. Binding of annexin A4 induces dehydration of the vesicle surface. The strength of the effects is much greater at pH 4 than at pH 7.4. At pH 7.4 annexin A4 reduces the Ca(2+)-threshold concentration necessary to induce fusion of PA LUV. The Ca(2+) induced fusion of PS LUV is not affected by annexin A4 at pH 7.4. At pH 4 annexin A4 induces fusion of either vesicles without Ca(2+). Despite the low binding extents at neutral pH annexin A4 induces a Ca(2+) independent leakage of PS- or PA-LUV. The leakage extent is increased at acidic pH. From the data two suggestions are made: (1) At pH 4 annexin A4 (at least partially) penetrates into the bilayer in contrast to the preferred location at the vesicle surface at neutral pH. The conformation of annexin A4 seems to be different at the two conditions. (2) At neutral pH, Annexin A4 seems to be able to bind two PA vesicles simultaneously; however, only one PS vesicle at the same time. This behavior might be related to a recently described double Ca(2+) binding site, which appears to be uniquely suited for PS.  相似文献   

12.
As a first step toward the elucidation of a simple animal model in which to investigate annexin function, we identified, isolated, and characterized a novel annexin from Hydra vulgaris, annexin XII. A hydra cDNA library was screened using a probe generated by polymerase chain reaction from primers based on the partial amino acid sequence of annexin XII. Annexin XII cDNA was cloned and the functional protein was expressed in high yields in Escherichia coli. The annexin XII cDNA sequence predicted a 316-amino acid protein that had between 44 and 54% sequence identity with the Ca2+-binding core domains of previously characterized vertebrate and Drosophila annexins. The amino-terminal domain of annexin XII did not have sequence similarity with other known annexins except at and around a site that resembled known protein kinase C (PKC) phosphorylation sites in other annexins. As anticipated from its sequence, annexin XII was a high affinity substrate for purified rat brain PKC; half-maximal phosphorylation occurred below 0.1 microM annexin XII, and incorporation of up to 0.8 mol of phosphate/mol of annexin XII was observed. A PKC-like activity in hydra extracts also phosphorylated annexin XII. In summary, hydra promises to be a valuable model system for investigating the biological function of annexins and for determining how this function is modulated by PKC phosphorylation.  相似文献   

13.
Annexin 2 belongs to the annexin family of proteins that bind to phospholipid membranes in a Ca(2+)-dependent manner. Here we show that, under mild acidic conditions, annexin 2 binds to and aggregates membranes containing anionic phospholipids, a fact that questions the mechanism of its interaction with membranes via Ca(2+) bridges only. The H(+) sensitivity of annexin 2-mediated aggregation is modulated by lipid composition (i.e. cholesterol content). Cryo-electron microscopy of aggregated liposomes revealed that both the monomeric and the tetrameric forms of the protein form bridges between the liposomes at acidic pH. Monomeric annexin 2 induced two different organizations of the membrane junctions. The first resembled that obtained at pH 7 in the presence of Ca(2+). For the tetramer, the arrangement was different. These bridges seemed more flexible than the Ca(2+)-mediated junctions allowing the invagination of membranes. Time-resolved fluorescence analysis at mild acidic pH and the measurement of Stokes radius revealed that the protein undergoes conformational changes similar to those induced by Ca(2+). Labeling with the lipophilic probe 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine indicated that the protein has access to the hydrophobic part of the membrane at both acidic pH in the absence of Ca(2+) and at neutral pH in the presence of Ca(2+). Models for the membrane interactions of annexin 2 at neutral pH in the presence of Ca(2+) and at acidic pH are discussed.  相似文献   

14.
The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.  相似文献   

15.
Ca(2+)-dependent annexin self-association on membrane surfaces   总被引:3,自引:0,他引:3  
W J Zaks  C E Creutz 《Biochemistry》1991,30(40):9607-9615
Annexin self-association was studied with 90 degrees light scattering and resonance energy transfer between fluorescein (donor) and eosin (acceptor) labeled proteins. Synexin (annexin VII), p32 (annexin IV), and p67 (annexin VI) self-associated in a Ca(2+)-dependent manner in solution. However, this activity was quite labile and, especially for p32 and p67, was not consistently observed. When bound to chromaffin granule membranes, the three proteins consistently self-associated and did so at Ca2+ levels (pCa 5.0-4.5) approximately 10-fold lower than required when in solution. Phospholipid vesicles containing phosphatidylserine and phosphatidylethanolamine (1:1 or 1:3) were less effective at supporting annexin polymerization than were those containing phosphatidylserine and phosphatidylcholine (1:0, 1:1, or 1:3). The annexins bound chromaffin granule membranes in a positively cooperative manner under conditions where annexin self-association was observed, and both phenomena were inhibited by trifluoperazine. Ca(2+)-dependent chromaffin granule membrane aggregation, induced by p32 or synexin, was associated with intermembrane annexin polymerization at Ca2+ levels less than pCa 4, but not at higher Ca2+ concentrations, suggesting that annexin self-association may be necessary for membrane contact at low Ca2+ levels but not at higher Ca2+ levels where the protein may bind two membranes as a monomer.  相似文献   

16.
The annexins are a structurally related family of Ca2+ and phospholipid binding proteins whose function has not been clearly defined. Further investigations of annexin function may be enhanced by studying simpler organisms that express fewer annexin gene products. We previously characterized annexin XII from the freshwater cnidarian Hydra vulgaris (Schlaepfer, D. D., D. A. Fisher, M. E. Brandt, H. R. Bode, J. Jones, and H. T. Haigler. 1992. J. Biol. Chem. 267:9529-9539). In this report, we detected one other hydra annexin (40 kD) by screening hydra cell extracts with antibodies raised against peptides from highly conserved regions of known annexins. The 40-kD protein was expressed at less than 1% of annexin XII levels. These biochemical studies indicate that hydra contain a very limited number of annexin gene products. The cellular hydra annexin distribution was analyzed by indirect immunofluorescence. Using affinity-purified antibodies to annexin XII, the epithelial battery cells were stained throughout the tentacle. A lower level of annexin XII staining was detected in peduncle region epithelial cells. No other cell types showed detectable annexin XII staining. The anti-peptide antibody that specifically detected the 40-kD hydra annexin, maximally stained the cytoplasm of nematocytes. The immunofluorescent results showed that annexin XII and the 40-kD annexin were not co-expressed in the same cells. Since the hydra annexins localized to specific subsets of the total hydra cell types, it is likely that these proteins perform specialized biological roles, and not general "housekeeping" functions which are part of the essential molecular machinery of all cells.  相似文献   

17.
Goebeler V  Ruhe D  Gerke V  Rescher U 《FEBS letters》2003,546(2-3):359-364
Annexin A9 is a novel member of the annexin family of Ca(2+) and phospholipid binding proteins which has so far only been identified in EST data bases and whose deduced protein sequence shows mutations in residues considered crucial for Ca(2+) coordination in other annexins. To elucidate whether the annexin A9 protein is expressed as such and to characterize its biochemical properties we probed cell extracts with specific anti-annexin A9 antibodies and developed a recombinant expression system. We show that the protein is found in HepG2 hepatoma cell lysates and that a green fluorescent protein-tagged form is abundantly expressed in the cytosol of HeLa cells. Recombinant expression in bacteria yields a soluble protein that can be enriched by conventional chromatographic procedures. The protein is capable of binding phosphatidylserine containing liposomes albeit only at Ca(2+) concentrations exceeding 2 mM. Moreover and in contrast to other annexins this binding appears to be irreversible as the liposome-bound annexin A9 cannot be released by Ca(2+) chelation. These results indicate that annexin A9 is a unique member of the annexin family whose intracellular activity is not subject to Ca(2+) regulation.  相似文献   

18.
Isas JM  Kim YE  Jao CC  Hegde PB  Haigler HT  Langen R 《Biochemistry》2005,44(50):16435-16444
Annexins are a family of soluble proteins that can undergo reversible Ca(2+)-dependent interaction with the interfacial region of phospholipid membranes. The helical hairpins on the convex face of the crystal structure of soluble annexins are proposed to mediate binding to membranes, but the mechanism is not defined. For this study, we used a site-directed spin labeling (SDSL) experimental approach to investigate Ca(2+) and membrane-induced structural and dynamic changes that occurred in the helical hairpins encompassing three of the four D and E helices of annexin B12. Electron paramagnetic resonance (EPR) parameters were analyzed for the soluble and Ca(2+)-dependent membrane-bound states of the following nitroxide scans of annexin B12: a continuous 24-residue scan of the D and E helices in the third repeat (residues 219-242) and short scans encompassing the D-E loop regions of the first repeat (residues 68-74) and the fourth repeat (300-305). EPR mobility and accessibility parameters of most sites were similar when the protein was in solution or in the membrane-bound state, and both sets of data were consistent with the crystal structure of the protein. However, membrane-induced changes in mobility and accessibility were observed in all three loop regions, with the most dramatic changes noted at sites corresponding to the highly conserved serine and glycine residues in the loops. EPR accessibility parameters clearly established that nitroxide side chains placed at these sites made direct contact with the bilayer. EPR mobility parameters showed that these sites were very mobile in solution, but immobilized on the EPR time scale in the membrane-bound state. Since the headgroup regions of bilayer phospholipids are relatively mobile in the absence of annexins, Ca(2+)-dependent binding of annexin B12 appears to form a complex in which the mobility of the D-E loop region of the protein and the headgroup region of the phospholipid are highly constrained. Possible biological consequences of annexin-induced restriction of membrane mobility are discussed.  相似文献   

19.
20.
Biophysical and molecular properties of annexin-formed channels   总被引:8,自引:0,他引:8  
The annexins are water soluble proteins possessing a hydrophilic surface, which belong to a family of proteins which (a) bind ('annex') both calcium and phospholipids, and (b) form voltage-dependent calcium channels within planar lipid bilayers. Annexins types are diverse (94 annexins in 45 species) and they belong to an enormous multigene family that ranges throughout all eukaryotic kingdoms. Although the structure of these proteins is now well known their functional and physiological roles remain largely unknown and circumstantial. Various experimental approaches provided evidence that annexins function as Ca(2+) channels that could act as regulators of membrane fusion. The identity of annexins is derived from the conserved 34 kDa C-terminal domain which comprises four repeats - except for annexin VI, with eight repeats - of a sequence of approximately seventy amino acids, which holds the area known as the 'endonexin fold', with its identifying GXGTDE. Annexins have been placed into three subgroups of (1) tetrad core and short amino terminal, (2) tetrad core and long amino terminal, and (3) octad core and short amino terminal. The repeats are highly conserved, each forming a compact alpha-helical domain comprising five alpha-helices wound in a right-handed superhelix. Four domains are formed, arranged in a nearly flat and cyclical array, with domains I and IV, and II and III respectively forming two tightly organised modules with almost twofold symmetry. A hydrophilic pore lies at the centre of the molecule, forming a prominent ion channel coated with charged and highly conserved residues. The annexin molecule is slightly curved, with both a convex and a concave face. The cation/anion permeability ratios and the selectivity sequence of the ion channels formed by several annexins confirm the selectivity of the annexins for Ca(2+) over other divalent cations, and reveals the importance of structural sites, e.g. amino acid positions 17, 78, 95 and 112 for the identification of the ion channel's position, function and regulation. Some are sensitive to low doses of the phenothiazine drugs, trifluoperazine (an anti-schizophrenia drug) and promethazine (anti nausea drug) La(3+) and Cd(2+), (blockers of voltage-gated Ca(2+) channels) nifedipine (an inhibitor of non-activating Ca(2+) channels). There are two main competing models used to explain in vitro ion channel activity of annexins: one involves changes in the conductance of ion via electrostatic disturbance of the membrane surface; the other involves a much more extensive alteration in protein structure and a correspondingly deeper penetration into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号