首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells-glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)—were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655Δ(edd-eda), MG1655Δ(zwf, edd-eda), and MG1655Δ(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

2.
3.
Escherichia coli MG1655 cells expressing Vitreoscilla hemoglobin (VHb), Alcaligenes eutrophus flavohemoprotein (FHP), the N-terminal hemoglobin domain of FHP (FHPg), and a fusion protein which comprises VHb and the A. eutrophus C-terminal reductase domain (VHb-Red) were grown in a microaerobic bioreactor to study the effects of low oxygen concentrations on the central carbon metabolism, using fractional (13)C-labeling of the proteinogenic amino acids and two-dimensional [(13)C, (1)H]-correlation nuclear magnetic resonance (NMR) spectroscopy. The NMR data revealed differences in the intracellular carbon fluxes between E. coli cells expressing either VHb or VHb-Red and cells expressing A. eutrophus FHP or the truncated heme domain (FHPg). E. coli MG1655 cells expressing either VHb or VHb-Red were found to function with a branched tricarboxylic acid (TCA) cycle. Furthermore, cellular demands for ATP and reduction equivalents in VHb- and VHb-Red-expressing cells were met by an increased flux through glycolysis. In contrast, in E. coli cells expressing A. eutrophus hemeproteins, the TCA cycle is running cyclically, indicating a shift towards a more aerobic regulation. Consistently, E. coli cells displaying FHP and FHPg activity showed lower production of the typical anaerobic by-products formate, acetate, and D-lactate. The implications of these observations for biotechnological applications are discussed.  相似文献   

4.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

5.
Chinese hamster ovary (CHO) cell cultures are commonly used for production of recombinant human therapeutic proteins. Often the goal of such a process is to separate the growth phase of the cells, from the non‐growth phase where ideally the cells are diverting resources to produce the protein of interest. Characterizing the way that the cells use nutrients in terms of metabolic fluxes as a function of culture conditions can provide a deeper understanding of the cell biology offering guidance for process improvements. To evaluate the fluxes, metabolic flux analysis of the CHO cell culture in the non‐growth phase was performed by a combination of steady‐state isotopomer balancing and stoichiometric modeling. Analysis of the glycolytic pathway and pentose phosphate pathway (PPP) indicated that almost all of the consumed glucose is diverted towards PPP with a high NADPH production; with even recycle from PPP to G6P in some cases. Almost all of the pyruvate produced from glycolysis entered the TCA cycle with little or no lactate production. Comparison of the non‐growth phase against previously reported fluxes from growth phase cultures indicated marked differences in the fluxes, in terms of the split between glycolysis and PPP, and also around the pyruvate node. Possible reasons for the high NADPH production are also discussed. Evaluation of the fluxes indicated that the medium strength, carbon dioxide level, and temperature with dissolved oxygen have statistically significant impacts on different nodes of the flux network. Biotechnol. Bioeng. 2011; 108:82–92. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Glucose catabolism by the obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H proceeds in two phases comprising rapid periplasmic oxidation of glucose to gluconate (phase I) and oxidation of gluconate to 2-ketogluconate or 5-ketogluconate (phase II). Only a small amount of glucose and part of the gluconate is taken up into the cells. To determine the roles of the pentose phosphate pathway (PPP) and the Entner–Doudoroff pathway (EDP) for intracellular glucose and gluconate catabolism, mutants defective in either the PPP (Δgnd, Δgnd zwf*) or the EDP (Δedd–eda) were characterized under defined conditions of pH 6 and 15 % dissolved oxygen. In the presence of yeast extract, neither of the two pathways was essential for growth with glucose. However, the PPP mutants showed a reduced growth rate in phase I and completely lacked growth in phase II. In contrast, the EDP mutant showed the same growth behavior as the reference strain. These results demonstrate that the PPP is of major importance for cytoplasmic glucose and gluconate catabolism, whereas the EDP is dispensable. Reasons for this difference are discussed.  相似文献   

7.
The Escherichia coli strain Pgi-UdhA, a mutant of the strain MG1655, is deficient in both the pgi gene and the udhA gene and cannot grow on glucose as carbon and energy source. This strain was transformed with different pET-plasmids containing archaeal or bacterial pgi, cpgi or pgi/pmi genes from the three known PGI families (PGI, PGI/PMI, cPGI). Growth could be restored upon plasmid-based expression of pgi, pgi/pmi or cpgi genes indicating that these heterologous proteins can substitute for E. coli PGI. However, complete restoration of the growth rate could not be obtained by any of the PGIs, PGI/PMIs, or cPGIs used. The data indicate that the PGI function of the three PGI families is functionally exchangeable in glycolysis.  相似文献   

8.
Genome-based Flux Balance Analysis (FBA) and steady-state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here, genome-derived models of Escherichia coli (E. coli) metabolism were used for FBA and 13C-MFA analyses of aerobic and anaerobic growths of wild-type E. coli (K-12 MG1655) cells. Validated MFA flux maps reveal that the fraction of maintenance ATP consumption in total ATP production is about 14% higher under anaerobic (51.1%) than aerobic conditions (37.2%). FBA revealed that an increased ATP utilization is consumed by ATP synthase to secrete protons from fermentation. The TCA cycle is shown to be incomplete in aerobically growing cells and submaximal growth is due to limited oxidative phosphorylation. An FBA was successful in predicting product secretion rates in aerobic culture if both glucose and oxygen uptake measurement were constrained, but the most-frequently predicted values of internal fluxes yielded from sampling the feasible space differ substantially from MFA-derived fluxes.  相似文献   

9.
【目的】克隆丙酮丁醇梭状芽胞杆菌(Clostridium acetobutylicum)ATCC824丁醇合成途径关键酶基因,构建产丁醇的工程大肠杆菌。【方法】以C.acetobutylicum ATCC824基因组为模板,分别扩增丁醇合成途径关键酶基因thil,adhE2和BCS operon(crt-bcd-etfB-etfA-hbd)基因序列,构建BCS operon-adhE2-thil/pTrc99a/MG1655(pBAT)。重组菌E.coli pBAT采用0.1 mmol异丙基-β-硫代半乳糖苷(IPTG)诱导5 h,测定乙酰基转移酶(THL)、3-羟基丁酰辅酶A脱氢酶(HBD)、3-羟基丁酰辅酶A脱水酶(CRT)、丁酰辅酶A脱氢酶(BCD)、醛醇脱氢酶(BYDH/BDH)的酶活。并以该基因工程菌作为发酵菌种,采用好氧、厌氧和微好氧三种培养方式,检测丁醇产量。【结果】酶活测定结果显示:THL酶活达到0.160 U/mg protein,酶活力提高了近30倍;HBD酶活力提高了近5倍;CRT酶活达到1.53 U/mg protein,野生菌株无此酶活;BCD酶活力提高了32倍;BYDH/BDH酶活力无显著提高。3种发酵培养结果显示在微好氧和厌氧条件下,均有丁醇产生,且丁醇的最大产量约为84 mg/L。【结论】本实验通过构建产丁醇基因工程大肠杆菌,实现了丁醇关键酶基因在大肠杆菌中的活性表达以及发酵产丁醇,为发酵法生产丁醇开辟了一条新的途径。  相似文献   

10.
The aim of this study was twofold: first, to characterize the free extracellular polymeric substances (EPS) and bound EPS produced by Escherichia coli during different growth phases in different media, and then to investigate the role of the free EPS in promoting aggregation. EPS was extracted from a population of E. coli MG1655 cells grown in different media composition (Luria-Bertani (LB) and Luria-Bertani with the addition of 0.5 w/v% glucose at the beginning of the growth phase (LBG)) and at different growth phases (6 and 24 h). The extracted EPS was characterized using Fourier transform infrared spectroscopy and further identified using one-dimensional gel-based electrophoresis and tandem mass spectrometry. E. coli MG1655 was found to produce significantly lower amounts of bound EPS compared to free EPS under all conditions. The protein content of free EPS increased as the cells progressed from the exponential to stationary phase when grown in LB or LBG, while the carbohydrate content only increased across the growth phases for cells grown in LBG. FTIR revealed a variation in the different functional groups such as amines, carboxyl, and phosphoryl groups for free EPS extracted at the different growth conditions. Over 500 proteins were identified in the free EPS, with 40 proteins common in all growth conditions. Proteins with functionality related to amino acid and carbohydrate metabolism, as well as cell wall and membrane biogenesis were among the highest proteins identified in the free EPS extracted from E. coli MG1655 under all growth and media conditions. The role of bound and free EPS was investigated using a standardized aggregation assay. Bound EPS did not contribute to aggregation of E. coli MG1655. The readdition of free EPS to E. coli MG1655 resulted in aggregation of the cells in all growth conditions. Free EPS extracted from the 24 h E. coli MG1655 cultures grown in LB had the greatest effect on aggregation of cells grow in LBG, with a 30% increase in aggregation observed.  相似文献   

11.
12.
Bacterial metabolism of polysaccharides from plant detritus into acids and solvents is an essential component of the terrestrial carbon cycle. Understanding the underlying metabolic pathways can also contribute to improved production of biofuels. Using a metabolomics approach involving liquid chromatography-mass spectrometry, we investigated the metabolism of mixtures of the cellulosic hexose sugar (glucose) and hemicellulosic pentose sugars (xylose and arabinose) in the anaerobic soil bacterium Clostridium acetobutylicum. Simultaneous feeding of stable isotope-labeled glucose and unlabeled xylose or arabinose revealed that, as expected, glucose was preferentially used as the carbon source. Assimilated pentose sugars accumulated in pentose phosphate pathway (PPP) intermediates with minimal flux into glycolysis. Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among the pentose sugars, with arabinose utilized preferentially over xylose. The phosphoketolase pathway (PKP) provides an alternative route of pentose catabolism in C. acetobutylicum that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate, bypassing most of the PPP. When feeding the mixture of pentose sugars, the labeling patterns of lower glycolytic intermediates indicated more flux through the PKP than through the PPP and upper glycolysis, and this was confirmed by quantitative flux modeling. Consistent with direct acetyl-phosphate production from the PKP, growth on the pentose mixture resulted in enhanced acetate excretion. Taken collectively, these findings reveal two hierarchies in clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP.  相似文献   

13.
5-氨基乙酰丙酸 (ALA) 是生物体内四吡咯类化合物的合成前体,在农业及医药领域应用广泛,是极具开发价值的高附加值生物基化学品。目前利用外源C4途径的重组大肠杆菌发酵生产ALA的研究主要利用LB培养基并添加葡萄糖和琥珀酸、甘氨酸等合成前体,成本较高。琥珀酸在C4途径中以琥珀酰辅酶A的形式直接参与ALA的合成。文中在以葡萄糖为主要碳源的无机盐培养基中研究了琥珀酰辅酶A下游代谢途径琥珀酸脱氢酶编码基因sdhAB和琥珀酰辅酶A合成酶编码基因sucCD缺失对ALA积累的影响。与仅表达异源ALA合成酶的对照菌株相比,sdhAB和sucCD缺失菌株ALA的产量分别提高了25.59%和12.40%,且ALA的积累不依赖于琥珀酸的添加和LB培养基的使用,从而大幅降低了生产成本,显示出良好的工业应用前景。  相似文献   

14.
This contribution addresses the identification of metabolic fluxes and metabolite concentrations in mammalian cells from transient (13)C-labeling experiments. Whilst part I describes experimental set-up and acquisition of required metabolite and (13)C-labeling data, part II focuses on setting up network models and the estimation of intracellular fluxes. Metabolic fluxes were determined in glycolysis, pentose-phosphate pathway (PPP), and citric acid cycle (TCA) in a hepatoma cell line grown in aerobic batch cultures. In glycolytic and PPP metabolite pools isotopic stationarity was observed within 30 min, whereas in the TCA cycle the labeling redistribution did not reach isotopic steady state even within 180 min. In silico labeling dynamics were in accordance with in vivo (13)C-labeling data. Split ratio between glycolysis and PPP was 57%:43%; intracellular glucose concentration was estimated at 101.6 nmol per 10(6) cells. In contrast to isotopic stationary (13)C-flux analysis, transient (13)C-flux analysis can also be applied to industrially relevant mammalian cell fed-batch and batch cultures.  相似文献   

15.
16.
A new algorithm was developed for the estimation of the metabolic flux distribution based on GC-MS data of proteinogenic amino acids. By using a sensitive GC-MS protocol as well as by combining the global search algorithm such as the genetic algorithm with the local search algorithm such as the Levenberg-Marquardt algorithm, not only the distribution of the net fluxes in the entire network, but also certain exchange fluxes which contribute significantly to the isotopomer distribution could be quantified. This mass isotopomer analysis could identify the biochemical changes involved in the regulation where acetate or glucose was used as a main carbon source. The metabolic flux analysis clearly revealed that when the specific growth rate increased, only a slight change in flux distribution was observed for acetate metabolism, indicating that subtle regulation mechanism exists in certain key junctions of this network system. Different from acetate metabolism, when glucose was used as a carbon source, as the growth rate increased, a significant increase in relative pentose phosphate pathway (PPP) flux was observed for Escherichia coli K12 at the expense of the citric acid cycle, suggesting that when growing on glucose, the flux catalyzed by isocitrate dehydrogenase could not fully fulfill the NADPH demand for cell growth, causing the oxidative PPP to be utilized to a larger extent so as to complement the NADPH demand. The GC-MS protocol as well as the new algorithm demonstrated here proved to be a powerful tool for characterizing metabolic regulation and can be utilized for strain improvement and bioprocess optimization.  相似文献   

17.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

18.
好氧发酵生产琥珀酸工程菌株的构建   总被引:2,自引:0,他引:2  
通过分析大肠杆菌的碳源代谢途径, 利用基因敲除手段, 以Escherichia coli MG1655为出发菌株, 成功构建了琥珀酸好氧发酵生产工程菌E. coli QZ1111 (MG1655?ptsG?poxB?pta?iclR?sdhA)。检测结果表明该菌株能以葡萄糖为碳源, 在好氧发酵且不表达任何异源基因的条件下大量积累琥珀酸。摇瓶试验证明, 琥珀酸发酵产量达到26.4 g/L, 乙酸盐作为唯一检测到的副产物产量为2.3 g/L。二者浓度比达到11.5:1。  相似文献   

19.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

20.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号