首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes virus entry mediator (HVEM) is one of two principal receptors mediating herpes simplex virus (HSV) entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333) that expressed wild-type gD (HSV-2/gD) or mutant gD able to bind to nectin-1 (the other principal entry receptor) but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333). After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+) T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+) T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.  相似文献   

2.
The aim of the study was to characterize biological features of the sensitive mutant of HSV-1, derived from McIntyre strain by numerous virus passages at lowered replication temperature (28 degrees C). Pathogenicity of obtained ts mutant for inbred mice lines, CFW/Pzh and BALB/cPzh, was determined. Statistically significant decrease in virulence of the mutant for these mouse lines was demonstrated, as compared with the native virus strain, propagated at 37 degrees C. Immunogenic activity of ts mutant of HSV-1 defined by the possibility of mouse protection against infection with high virulent was determined. Mice, which at the time of immunization with ts mutant received Depo-Medrol--an immunosuppressive agent--were also found to be capable of inducing defense mechanisms to infection with the native strain.  相似文献   

3.
Vlot AC  Laros SM  Bol JF 《Journal of virology》2003,77(20):10790-10798
RNAs 1 and 2 of the tripartite genome of alfalfa mosaic virus encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and coat protein. Transient expression of wild-type (wt) and mutant viral RNAs and proteins by agroinfiltration of plant leaves was used to study cis- and trans-acting functions of the helicase-like domain in P1 and the polymerase-like domain in P2. Three mutations in conserved motifs of the helicase-like domain of P1 affected one or more steps leading to synthesis of minus-strand RNAs 1, 2, and 3. In leaves containing transiently expressed P1 and P2, replication of wt but not mutant RNA 1 was observed. Apparently, the transiently expressed P1 could not complement the defect in replication of the RNA 1 mutant. Moreover, the transiently expressed wt replicase supported replication of RNA 2, but this replication was blocked in trans by coexpression of mutant RNA 1. However, expression of mutant RNA 1 did not interfere with the replication of RNA 3 by the wt replicase. Similarly, a mutation in the GDD motif encoded by RNA 2 could not be complemented in trans and affected the replication of RNA 1 by a wt replicase, while replication of RNA 3 remained unaffected. In competition assays, the transient wt replicase preferentially replicated RNA 3 over RNAs 1 and 2. The results indicate that one or more functions of P1 and P2 act in cis and point to the existence of a mechanism that coordinates the replication of RNAs 1 and 2.  相似文献   

4.
Us3 is a serine–threonine protein kinase that is encoded by herpes simplex virus 1 (HSV‐1). In experimental animal models of HSV infection, peripheral and intracranial inoculations can be used to study viral pathogenicity in peripheral sites (e.g., eyes and vagina) and central nervous systems (CNSs), respectively. In addition, peripheral inoculation can be used to investigate this virus' ability to invade the CNS (neuroinvasiveness) from peripheral sites. HSV‐1 Us3 has previously been shown to be critical for viral pathogenicity in both peripheral sites and CNSs of mice. However, the role of HSV‐1 Us3 in viral neuroinvasiveness has not yet been elucidated. In the present study, the yields of a Us3 null mutant virus and its repaired virus in the eyes, trigeminal ganglia, and brains of mice following ocular inoculation were examined. It was found that, although the repaired virus appeared in the brains of mice 3 days after infection, peak replication occurring 7 days after infection, no viral replication of the Us3 null mutant virus was detectable. These findings indicate that HSV‐1 Us3 plays a crucial role in the ability of the virus to invade the brain from the eyes. Thus, HSV‐1 Us3 is a significant neuroinvasiveness factor in vivo.  相似文献   

5.
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.  相似文献   

6.
RNA virus behavior can be influenced by interactions among viral genomes and their expression products within the mutant spectra of replicating viral quasispecies. Here, we report the extent of interference of specific capsid and polymerase mutants of foot-and-mouth disease virus (FMDV) on replication of wild-type (wt) RNA. The capsid and polymerase mutants chosen for this analysis had been characterized biochemically and structurally. Upon co-electroporation of BHK-21 cells with wt RNA and a tenfold excess of mutant RNA, some mutants displayed strong interference (<10% of progeny production by wt RNA alone), while other mutants did not show detectable interference. The capacity to interfere required an excess of mutant RNA and was associated with intracellular replication, irrespective of the formation of infectious particles by the mutant virus. The extent of interference did not correlate with the known types and number of interactions involving the amino acid residue affected in each mutant. Synergistic interference was observed upon co-electroporation of wt RNA and mixtures of capsid and polymerase mutants. Interference was specific, in that the mutants did not affect expression of encephalomyocarditis virus RNA, and that a two nucleotide insertion mutant of FMDV expressing a truncated polymerase did not exert any detectable interference. The results support the lethal defection model for viral extinction by enhanced mutagenesis, and provide further evidence that the population behavior of highly variable viruses can be influenced strongly by the composition of the quasispecies mutant spectrum as a whole.  相似文献   

7.
J P Katz  E T Bodin    D M Coen 《Journal of virology》1990,64(9):4288-4295
To study the roles of viral genes in the establishment and maintenance of herpes simplex virus (HSV) latency, we have developed a polymerase chain reaction assay that is both quantitative and sensitive. Using this assay, we analyzed the levels of viral DNA in trigeminal ganglia of mice inoculated corneally with HSV mutants that are defective for virus replication at one or more sites in mice and for reactivation upon ganglionic explant. Ganglia from mice infected with thymidine kinase-negative mutants, which replicate at the site of inoculation and establish latency but do not replicate acutely in ganglia or reactivate upon explant, contained a range of levels of HSV DNA that overlapped with the range found in ganglia latently infected with wild-type virus. On average, these mutant-infected ganglia contained one copy of HSV DNA per 100 cell equivalents (ca. 10(4) molecules), which was 50-fold less than the average for wild-type virus. Ganglia from mice infected with a ribonucleotide reductase deletion mutant, which is defective for acute replication and reactivation upon ganglionic explant, also contained on average one copy of HSV DNA per 100 cell equivalents. We also detected substantial numbers of HSV DNA molecules (up to ca. 10(3] in ganglia of mice infected with an ICP4 deletion mutant and other replication-negative mutants that are severely impaired for viral DNA replication and gene expression. These results raise the possibility that such mutants can establish latency, which could have important implications for mechanisms of latency and for vaccine and antiviral drug development.  相似文献   

8.
9.
The course of acute infection of mice with ts mutant or the native strain DNA and the antigens of HSV in brain nerve cells were determined. Virus DNA was detected in brains of all mice in both animal groups while the virus antigens--only in cells of mice infected with the native strain. It can be suggested, therefore, that the ability of ts mutant to replicate in central nervous system of the infected mice is lacking or much lower. The detection of virus nucleic acid 3-5 months after virus infection might indicate a possibility of establishing latent infection. However, ts mutant showed a significantly lower possibility of latency induction, as compared with highly virulent strains. It was found that the mutant ability to induce latent infection was markedly increased when mice were treated with both ts mutant and Depo-Medrol as immunosuppressive agent. This finding shows both a possibility of increase of frequency of latent infections in the state of immunosuppression, and of activation of the latent infection (recurrence of acute form of infection).  相似文献   

10.
A number of studies have shown that replication-defective mutant strains of herpes simplex virus (HSV) can induce protective immunity in animal systems against wild-type HSV challenge. However, all of those studies used viruses with single mutations. Because multiple, stable mutations provide optimal levels of safety for live vaccines, we felt that additional mutations needed to be engineered into a candidate vaccine strain for HSV-2 and genital herpes. We therefore isolated an HSV-2 strain with deletion mutations in two viral DNA replication protein genes, UL5 and UL29. The resulting double deletion mutant virus strain, dl5-29, fails to form plaques or to give any detectable single cycle yields in normal monkey or human cells. Nevertheless, dl5-29 expresses nearly the same pattern of gene products as the wild-type virus or the single mutant viruses and induces antibody titers in mice that are equivalent to those induced by single deletion mutant viruses. Therefore, it is feasible to isolate a mutant HSV strain with two mutations in essential genes and with an increased level of safety but which is still highly immunogenic.  相似文献   

11.
We recently demonstrated that herpes simplex virus type 1 (HSV 1) induces a receptor on human umbilical vein endothelial cells for complement component C3b (C3bR). We assigned this receptor function to HSV 1 viral glycoprotein C (gC) based on several observations: tunicamycin, which prevents glycosylation and expression of N-linked glycoproteins on the surface of infected cells, markedly reduced expression of the C3bR; monoclonal antibodies to HSV 1 gC blocked detection of the C3bR, whereas monoclonal antibodies to other HSV 1 glycoproteins (gB, gD, gE) had no effect; and the MP mutant of HSV 1, which fails to express gC, did not induce C3bR. We now report that HSV 1 induces C3bR on a wide variety of cell types including bovine thoracic aorta and pulmonary artery endothelial cells, human embryonic lung and embryonic foreskin fibroblasts, and human embryonic kidney cells. To date, all cells studied that are permissive to HSV 1 express C3bR, although the pattern of rosetting of C3b-coated erythrocytes varies among the cell strains examined. We also demonstrate that C3bR expression is not a general response of human umbilical vein endothelial cells to injury, because three other viruses (adenovirus 7, measles, and mumps) do not induce C3bR after infection of these cells. Previously we had shown that among herpes simplex viruses, a variety of HSV 1 strains induce C3bR, whereas HSV 2 strains do not. We now demonstrate that other herpes family viruses (CMV and VZV) do not express C3bR. Therefore, C3bR expression appears to be unique for HSV 1 and occurs on a wide variety of cells permissive to this virus.  相似文献   

12.
The carbohydrate content and composition of hemocyanins (Hcs) of three prosobranchs (gastropods), Rapana thomasiana, Megathura crenulata and Haliotis tuberculata, were compared. The analyses were performed by gas-liquid chromatography after methanolysis, re-N-acetylation and trimethylsilylation. The two structural subunits of R. thomasiana Hc, RtH1 and RtH2, both showed 2.6% (w/w) carbohydrate content with very similar monosaccharide composition, indicative for N-glycosylation. The two isoforms of M. crenulata Hc (KLH), KLH1 and KLH2, on the other hand, definitely differed in glycosylation: KLH2 (3.4% carbohydrate, w/w) comprised relatively less mannose and more N-acetylgalactosamine than KLH1 (3.0% carbohydrate, w/w), in agreement with the fact that O-glycosylation has been observed in a functional unit (FU) of KLH2. For the Hc of the abalone H. tuberculata, with 4.5% (w/w) carbohydrate, appreciable amounts of 3-O-methyl-d-mannose and 3-O-methyl-d-galactose were detected, showing that the occurrence of methylated sugars is not restricted to the Hcs of pulmonates. From the structural subunit RtH2 of Rapana Hc the FUs RtH2-b and RtH2-d were isolated. On the basis of amino acid sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the respective native and PNGase-F-treated glycopeptides, one N-glycosylation site was found for each FU. This site was located at Asn-405 for RtH2-b and at Asn-394 for RtH2-d; the carbohydrate moiety corresponded to GlcNAc2Man6 and GlcNAc2Man5, respectively. A comparison was made with the N-glycosylation sites of other FUs of Rapana Hc.  相似文献   

13.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   

14.
The herpes simplex virus (HSV) virion host shutoff (vhs) protein, the product of the UL41 (vhs) gene, is an important determinant of HSV virulence. vhs has been implicated in HSV interference with host antiviral immune responses, down-regulating expression of major histocompatibility complex molecules to help HSV evade host adaptive immunity. The severe attenuation of vhs-deficient viruses in vivo could reflect their inability to escape immune detection. To test this hypothesis, BALB/c or congenic SCID mice were infected intravaginally (i.vag.) with the HSV type 2 (HSV-2) vhs null mutant 333d41 or the vhs rescue virus 333d41(R). vhs-deficient virus remained severely attenuated in SCID mice compared with rescue virus, indicating that vhs regulation of adaptive immune responses does not influence HSV pathogenesis during acute infection. Innate antiviral effectors remain intact in SCID mice; prominent among these is alpha/beta interferon (IFN-alpha/beta). The attenuation of HSV-2 vhs mutants could reflect their failure to suppress IFN-alpha/beta-mediated antiviral activity. To test this hypothesis, 129 and congenic IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) mice were infected i.vag. with wild-type virus, vhs null mutants 333-vhsB or 333d41, or the vhs rescue virus 333d41(R). Whereas vhs-deficient viruses showed greatly reduced replication in the genital mucosa of 129 mice compared with wild-type or vhs rescue viruses, they were restored to nearly wild-type levels of replication in IFN-alpha/betaR(-/-) mice over the first 2 days postinfection. Only wild-type and vhs rescue viruses caused severe genital disease and hind limb paralysis in 129 mice, but infection of IFN-alpha/betaR(-/-) mice restored the virulence of vhs-deficient viruses. vhs-deficient viruses replicated as vigorously as wild-type and rescue viruses in the nervous systems of IFN-alpha/betaR(-/-) mice. Restoration was specific for the vhs mutation, because thymidine kinase-deficient HSV-2 did not regain virulence or the capacity to replicate in the nervous systems of IFN-alpha/betaR(-/-) mice. Furthermore, the defect in the IFN-alpha/beta response was required for restoration of vhs-deficient virus replication and virulence, but the IFN-alpha/beta-stimulated protein kinase R pathway was not involved. Finally, vhs of HSV-2 has a unique capacity to interfere with the IFN-alpha/beta response in vivo, because an HSV-1 vhs null mutant did not recover replication and virulence after i.vag. inoculation into IFN-alpha/betaR(-/-) mice. These results indicate that vhs plays an important role early in HSV-2 pathogenesis in vivo by interfering with the IFN-alpha/beta-mediated antiviral response.  相似文献   

15.
In vitro mitogenic stimulation of murine spleen cells by herpes simplex virus.   总被引:13,自引:0,他引:13  
Spleen cells of B6 mice not previously immunized were induced to DNA synthesis by supernatants from HSV-infected tissue culture. The stimulatory principle could be passed through a 45-micrometer filter and sedimented at 100,000 x G. It was abolished by UV light, heating at 56 degrees C, and by an anti-HSV serum. The possibility that the observed stimulation was caused by LPS was therefore excluded, and there was a-so no indication of mycoplasma contamination. Partial purification of spleen cells from macrophages resulted in an increased stimulation by HSV. From experiments with nylon columns, anti-theta antibody, and nude mice it was concluded that HSV acted as a B cell mitogen. Strains of both HSV types 1 and 2 were stimulatory for B6 spleen cells. Of nine freshly isolated HSV strains with identical passage history (twice in HEF) four were strongly stimulatory, three showed a moderate stimulation, and two did not stimulate. Spleen cells from A/J and DBA/2 mice were stimulated to the same extent by HSV (WAL) as spleen cells from B6 mice. No viral replication was demonstrable in B6 spleen cell cultures stimulated for DNA synthesis by HSV. Thus our study demonstrates induction of cellular DNA synthesis in B lymphocytes by HSV which is abolished by inactivation of the virus.  相似文献   

16.
Alzheimer's disease (AD) afflicts around 20 million people worldwide and so there is an urgent need for effective treatment. Our research showing that herpes simplex virus type 1 (HSV1) is a risk factor for AD for the brains of people who possess a specific genetic factor and that the virus causes accumulation of key AD proteins (β-amyloid (Aβ) and abnormally phosphorylated tau (P-tau)), suggests that anti-HSV1 antiviral agents might slow AD progression. However, currently available antiviral agents target HSV1 DNA replication and so might be successful in AD only if Aβ and P-tau accumulation depend on viral DNA replication. Therefore, we investigated firstly the stage(s) of the virus replication cycle required for Aβ and P-tau accumulation, and secondly whether antiviral agents prevent these changes using recombinant strains of HSV1 that progress only partly through the replication cycle and antiviral agents that inhibit HSV1 DNA replication. By quantitative immunocytochemistry we demonstrated that entry, fusion and uncoating of HSV1, are insufficient to induce Aβ and P-tau production. We showed also that none of the "immediate early" viral proteins is directly responsible, and that Aβ and P-tau are produced at a subsequent stage of the HSV1 replication cycle. Importantly, the anti-HSV1 antiviral agents acyclovir, penciclovir and foscarnet reduced Aβ and P-tau accumulation, as well as HSV1, with foscarnet being less effective in each case. P-tau accumulation was found to depend on HSV1 DNA replication, whereas Aβ accumulation was not. The antiviral-induced decrease in Aβ is attributable to the reduced number of new viruses, and hence the reduction in viral spread. Since antiviral agents reduce greatly Aβ and P-tau accumulation in HSV1-infected cells, they would be suitable for treating AD with great advantage unlike current AD therapies, only the virus, not the host cell, would be targeted.  相似文献   

17.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

18.
Replication of herpes simplex virus and cytomegalovirus in human leukocytes.   总被引:10,自引:0,他引:10  
Human peripheral blood leukocytes, lymphocyte subpopulations, and hemic cell lines were examined for their ability to supprot HSV and CMV replication. Mitogen-stimulated mononuclear leukocytes, B lymphocytes, and T lymphcytes supported the replication of HSV to high titers over 3 to 5 days of infection. HSV replicated in unstimulated mononuclear leukocyte cultures of one of five donors, and to a limited degree in untreated B lymphocytes of three of five donors; HSV replication was not detected in unstimulated T lymphocytes (five donors). There was no evidence of enhanced uptake of 3H-thymidine in the untreated donor cells that replicated HSV. CMV replication was not detected during 9 to 10 days of infection in untreated or mitogen-treated mononuclear leukocytes and lymphocyte subpopulations from the same adult donors or in neonatal cord blood leukocytes. The ability of the cells to support HSV or CMV replication did not correlate with the presence of specific antiviral antibodies in the donor serum. HSV replication in B, T, and myeloid cell lines to high titers over 5 days of infection, whereas CMV failed to replicate in any of the hemic cell lines. A persistent HSV infection has been established in a T cell line (CEM) with high titers of infectious virus being produced concurrently with growth of the cells over the first 11 weeks of infection.  相似文献   

19.
Varicella-zoster virus (VZV) open reading frame 17 (ORF17) is homologous to herpes simplex virus (HSV) UL41, which encodes the viral host shutoff protein (vhs). HSV vhs induces degradation of mRNA and rapid shutoff of host protein synthesis. An antibody to ORF17 protein detected a 46-kDa protein in VZV-infected cells. While HSV vhs is located in virions, VZV ORF17 protein was not detectable in virions. ORF17 protein induced RNA cleavage, but to a substantially lesser extent than HSV-1 vhs. Expression of ORF17 protein did not inhibit expression from a beta-galactosidase reporter plasmid, while HSV type 1 vhs abolished reporter expression. Two VZV ORF17 deletion mutants were constructed to examine the role of ORF17 in virus replication. While the ORF17 VZV mutants grew to peak titers that were similar to those of the parental virus at 33 degrees C, the ORF17 mutants grew to 20- to 35-fold-lower titers than parental virus at 37 degrees C. ORF62 protein was distributed in a different pattern in the nuclei and cytoplasm of cells infected with an ORF17 deletion mutant at 37 degrees C compared to 33 degrees C. Inoculation of cotton rats with the ORF17 deletion mutant resulted in a level of latent infection similar to that produced by inoculation with the parental virus. The importance of ORF17 protein for viral replication at 37 degrees C but not at 33 degrees C suggests that this protein may facilitate the growth of virus in certain tissues in vivo.  相似文献   

20.
Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic alpha-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this alpha-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gH(wt25)) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gH(wt25) did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号