首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some anamniotic aquatic vertebrates lay eggs in a terrestrialhabitat that is hostile to the survival of hatchings or larvae.These terrestrial eggs are ready and able to hatch at a particulardevelopmental time, but do not hatch until presented with suitableconditions for aquatic larval survival. Beyond this time, hatchingis possible whenever aquatic conditions occur. The durationof extended terrestrial incubation is dependent on the availabilityof energy for metabolism from the yolk. Extended incubationis useful for anamniotic eggs laid in terrestrial habitats whereconditions suitable for larval survival arrive with unpredictableor variable timing. Examples of anamniotes with delayed hatchingand extended terrestrial incubation can be found among teleostfishes, anurans, and caudate amphibians. This paper characterizesthe embryonic period, compares this mode with other forms ofdevelopmental plasticity in anamniotes, evaluates the constraintsand advantages of this life history mode, and examines how somefishes and amphibians are able to obtain the benefits of terrestrialityfor their eggs when the timing of the return to aquatic conditionsis not entirely predictable.  相似文献   

2.
Evolutionary changes in reproductive mode may affect co‐evolving traits, such as dispersal, although this subject remains largely underexplored. The shift from aquatic oviparous or larviparous reproduction to terrestrial viviparous reproduction in some amphibians entails skipping the aquatic larval stage and, thus, greater independence from water. Accordingly, amphibians exhibiting terrestrial viviparous reproduction may potentially disperse across a wider variety of suboptimal habitats and increase population connectivity in fragmented landscapes compared to aquatic‐breeding species. We investigated this hypothesis in the fire salamander (Salamandra salamandra), which exhibits both aquatic‐ (larviparity) and terrestrial‐breeding (viviparity) strategies. We genotyped 426 larviparous and 360 viviparous adult salamanders for 13 microsatellite loci and sequenced a mitochondrial marker for 133 larviparous and 119 viviparous individuals to compare population connectivity and landscape resistance to gene flow within a landscape genetics framework. Contrary to our predictions, viviparous populations exhibited greater differentiation and reduced genetic connectivity compared to larviparous populations. Landscape genetic analyses indicate viviparity may be partially responsible for this pattern, as water courses comprised a significant barrier only in viviparous salamanders, probably due to their fully terrestrial life cycle. Agricultural areas and, to a lesser extent, topography also decreased genetic connectivity in both larviparous and viviparous populations. This study is one of very few to explicitly demonstrate the evolution of a derived reproductive mode affects patterns of genetic connectivity. Our findings open avenues for future research to better understand the eco‐evolutionary implications underlying the emergence of terrestrial reproduction in amphibians.  相似文献   

3.
During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.  相似文献   

4.
The subject of ion regulation in invertebrates is discussed, using a variety of invertebrate model species and approaches that range from the whole-organism level to tissue, subcellular, and molecular levels to illustrate the future direction of the field. These organisms inhabit a variety of aquatic, freshwater, and terrestrial environments, showing specific adaptations to each environment. This overview discusses mechanisms of metal detoxification and the presence of Cl-ATPase in marine organisms to avoid excess intracellular Cl(-); Ca(2+) regulation and endocrine aspects of adaptations to transitional (semiterrestrial) environments; adaptations to Ca(2+)-poor freshwater, particularly the reabsorption of Ca(2+) through specific transporters found in the urine; and finally, ionoregulatory mechanisms for life on land, such as Ca(2+) conservation during molting in isopods and the presence of K(+) channels in insect Malpighian tubules. Convergent mechanisms for dealing with similar problems in dissimilar habitats are discussed, taking into consideration that invertebrates will continue to serve as model systems for the evolution of ionoregulation in different habitats.  相似文献   

5.
Acanthostega is one of the earliest and most primitive limbed vertebrates. Its numerous fish-like features indicate a primarily aquatic lifestyle, yet cranial suture morphology suggests that its skull is more similar to those of terrestrial taxa. Here, we apply geometric morphometrics and two-dimensional finite-element analysis to the lower jaws of Acanthostega and 22 other tetrapodomorph taxa in order to quantify morphological and functional changes across the fish–tetrapod transition. The jaw of Acanthostega is similar to that of certain tetrapodomorph fish and transitional Devonian taxa both morphologically (as indicated by its proximity to those taxa in morphospace) and functionally (as indicated by the distribution of stress values and relative magnitude of bite force). Our results suggest a slow tempo of morphological and biomechanical changes in the transition from Devonian tetrapod jaws to aquatic/semi-aquatic Carboniferous tetrapod jaws. We conclude that Acanthostega retained a primitively aquatic lifestyle and did not possess cranial adaptations for terrestrial feeding.  相似文献   

6.
Anurans hold a unique position in vertebrate phylogeny, as they made the major transition from water to land. Through evolution they have acquired fundamental mechanisms to adapt to terrestrial gravity. Such mechanisms are now shared among other terrestrial vertebrates derived from ancestral amphibians. Space research, using amphibians as a model animal, is significant based on the following aspects: (1) Anuran amphibians show drastic changes in their living niche during their metamorphosis. Environments for tadpoles and for terrestrial life of frogs are quite different in terms of gravity and its associated factors. (2) Certain tadpoles, such as Rhacophorus viridis amamiensis, have a transparent abdominal wall. Thus visceral organs and their motion can be observed in these animals in non-invasive manner through their transparent abdominal skin. This feature enables biologists to evaluate the physiological state of these amphibians and study the autonomic control of visceral organs. It is also feasible for space biologists to examine how such autonomic regulation could be altered by microgravity and exposure to the space environment.  相似文献   

7.
In the current study, 5-nydroxytryptamine(5-HT) and gastrin(GAS) cells in the digestive canals of Rana chensinensis tadpoles at different developmental stages were investigated by immunohistochemistry. Results showed that the 5-HT cells were only detected in the duodenum before metamorphosis began, and were extensively distributed in the stomach, duodenum, small intestine, and rectum thereafter, with the highest counts found in the duodenum and rectum when metamorphosis was completed. The GAS cells were only distributed in the stomach and duodenum, and only rarely detected in the duodenum before metamorphosis began, but increased in the stomach during metamorphosis and showed zonal distribution in the gastric mucosa when metamorphosis was completed. Metamorphosis is a critical period for amphibians, during which structural and functional physiological adaptations are required to transition from aquatic to terrestrial environments. During metamorphosis, the differentiations of 5-HT cells in the gastrointestinal canals of tadpoles could facilitate mucus secretion regulation, improve digestive canal lubrication, and help watershortage food digestion in terrestrial environments. Conversely, GAS cell differentiations during metamorphosis might contribute to the digestive and absorptive function transition from herbivore to omnivore.  相似文献   

8.
The transition from aquatic to terrestrial eggs is a key evolutionary change that has allowed vertebrates to successfully colonize and exploit the land. Although most amphibians retain the primitive biphasic life cycle (eggs deposited in water that hatch into free-living aquatic larvae), direct development of terrestrial eggs has evolved repeatedly and may have been critical to the evolutionary success of several amphibian groups. We provide the first conclusive evidence for evolutionary reversal of direct development in vertebrates. The family Plethodontidae (lungless salamanders) contains the majority of salamander species, including major radiations of direct developers. We reconstruct the higher level phylogenetic relationships of plethodontid salamanders using molecular and morphological data and use this phylogeny to examine the evolution of direct development. We show that the predominantly biphasic desmognathines, previously considered the sister group of other plethodontids, are nested inside a group of direct-developing species (Plethodontini) and have re-evolved the aquatic larval stage. Rather than being an evolutionary dead end, the reversal from direct developing to biphasic life history may have helped communities in eastern North America to achieve the highest local diversity of salamander species in the world.  相似文献   

9.
Changing conditions of life impose new requirements on the morphology and physiology of an organism. One of these changes is the evolutionary transition from aquatic to terrestrial life, leading to adaptations in locomotion, breathing, reproduction, and mechanisms for food capture. We have shown previously that insects' wings most likely originated from one of the gills of ancestral aquatic arthropods during their transition to life on land. Here we investigate the fate of these ancestral gills during the evolution of another major arthropod group, the chelicerates. We examine the expression of two developmental genes, pdm/nubbin and apterous, that participate in the specification of insects' wings and are expressed in particular crustacean epipods/gills. In the horseshoe crab, a primitively aquatic chelicerate, pdm/nubbin is specifically expressed in opisthosomal appendages that give rise to respiratory organs called book gills. In spiders (terrestrial chelicerates), pdm/nubbin and apterous are expressed in successive segmental primordia that give rise to book lungs, lateral tubular tracheae, and spinnerets, novel structures that are used by spiders to breathe on land and to spin their webs. Combined with morphological and palaeontological evidence, these observations suggest that fundamentally different new organs (wings, air-breathing organs, and spinnerets) evolved from the same ancestral structure (gills) in parallel instances of terrestrialization.  相似文献   

10.
The peculiar amphibious mode of life of California sea lions suggests that their locomotor systems may contain adaptations both to life on land and in the water. Previous studies of their locomotor behaviour have been either superficial or based on inferences which were derived from limb structure. Limb movements associated with locomotor behaviour in California sea lions are described on the basis of frame-by-frame analysis of slow motion cinematography of typical aquatic and terrestrial locomotor sequences. Results are compared to reports of terrestrial and aquatic locomotor behaviour in fissiped carnivores, whose locomotor behaviour is presumed to reflect the framework from which the locomotor behaviour of sea lions was derived. The major distinction between sea lions and fissipeds in terms of aquatic locomotor behaviour involves the use of the forelimb in sea lions. Propulsive thrust is generated by medial rotation, adduction and retraction of the forelimbs in sea lions, in contrast to nearly pure limb retraction in fissipeds. The major features which distinguish terrestrial locomotor behaviour in sea lions from that of fissipeds are use of the manus as a transverse rather than sagittal propulsive lever and extensive use of posterior axial and head and neck movements rather than hindlimb movements. The biomechanical implications of these movements are used to elucidate their potentially adaptive features.  相似文献   

11.
Morphological – anatomical features of the terrestrial and the aquatic life form of the rosette species Littorella uniflora, inhabiting nutrient poor soils of oligotrophic lakes, were investigated together with growth rates of both life forms and of transplants. Growth rates were the same for the two life forms. However, growth of transplanted plants was somewhat reduced by transition from one environment to another. This was especially true for aquatic plants, which may be stressed by desiccation when moved to the terrestrial environment. The morphological – anatomical differences between the life forms were small compared with many other amphibious species which produce highly specialized leaves and life forms in air and under water. It is suggested that the conservative leaf morphology of Littorella is a consequence of the high dependence on rhizospheric CO2 of both the aquatic and the terrestrial form of Littorella, making production of leaves specialized for carbon uptake in one specific environment unnecessary.  相似文献   

12.
Limbs and supporting structures of an organism experience a full weight of its own when it lands from water, because neutral buoyancy in the aquatic habitat will be no longer available in the terrestrial world. Metamorphosis of anuran amphibians presents a good research model to examine how this transition from non-loading to weight-loading affects development of motor capacity at the time of their first emergence on land. Our video analysis of the transitional anurans, Rana catesbeiana, at Gosner stage 46 (the stage of complete transformation) demonstrated that the take-off speed increased 1.23-fold after the first six hours of weight-loading on the wet ground. It did not increase further during the following three days of loading, and was close to the level of mature frogs with different body mass. During development of larvae in deep water with no chance of landing through metamorphosis, both tension and power of a hindlimb anti-gravity muscle increased 5-fold between stages 37 and 46. However, the muscle contractility increased more rapidly when the larvae could access the wet ground by their natural landing behavior after stages 41-42. Muscle power, one of major factors affecting locomotory speed, was 1.29-fold greater in the loaded than in the non-loaded larvae at the transitional stage. Thus, weight-loading had a potentially significant effect on the elevation of motor capacity, with a similar extent of increment in locomotory speed and muscle power during the last stages of metamorphosis. Such a motor adjustment of the froglets in a relatively short transitional period would be important for effective ecological interactions and survival in their inexperienced terrestrial life.  相似文献   

13.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   

14.
Temnospondyls, possible relatives of extant amphibians and crudely similar to recent salamanders, are known from larval, neotenic and metamorphosed stages. Here, ontogenetic data of various temnospondyl taxa are analysed in order to recognize metamorphosis. Here, metamorphosis is strictly defined as a shift from an aquatic to a terrestrial existence. Following a check-list of criteria, the most likely metamorphosis-induced changes are proved in three temnospondyl lineages: eryopids, zatrachydids and dissorophoids. In a few other, unrelated taxa, terrestrial adults are known but no larval or metamorphosing forms. The distribution of metamorphosis among the Temnospondyli does not strictly correlate with phylogeny, which highlights the widespread occurrence of neoteny. In each group, characteristic patterns of metamorphosis are described and compared. Among temnospondyls, dissorophoids had the most intensive type of metamorphosis, characterized by a condensed ontogeny and a relatively small body size. The result was a distinct transformed morphotype with far-reaching terrestrial adaptations.  相似文献   

15.
Many species, including most amphibians, undergo an ontogenetic niche shift (ONS) from an aquatic larval stage to a terrestrial adult stage. We use the ratio of aquatic to terrestrial habitat in a landscape as a tool to understand the influence of landscape context on the population growth of ONS species. The aquatic to terrestrial ratio (ATR) of habitats can be viewed as an analog to the influence of resource ratios on the population growth of consumers and depends on the degree to which each habitat type limits the growth of a given population. Population growth rates of shorter‐lived species tend to be more limited by demographic rates in early (aquatic) life stages. As a result, increasing the ATR should lead to a higher total population size in the landscape (and higher densities in the terrestrial habitat), but have little influence on the density of individuals in any given aquatic habitat. Alternatively, population growth rates of longer‐lived species tend to be more limited by demographic rates in later (terrestrial) life stages and increasing the ATR should have little influence on the total population size in the landscape, but decrease the density of individuals in any given aquatic habitat. We show that among‐landscape variation in the breeding‐pond densities of three widespread amphibians with contrasting life histories is consistent with this framework. Within‐pond densities of Pseudacris crucifer, a species with short‐lived adults, were not influenced by ATR, whereas within‐pond densities of Hyla versicolor, a longer‐lived member of the same family (Hylidae), declined as ATR increased. Ambystoma maculatum, a long‐lived salamander, also had lower densities in ponds with higher ATR. Because A. maculatum larvae are important predators in ponds, we use structural equation modeling to show that landscape context (ATR) can moderate community structure via direct (amphibian abundances) and indirect (prey species richness) effects.  相似文献   

16.
Biphasic life circle including water larvae and terrestrial adults is the primitive character for recent amphibians. Respectively, the larval development type (sensu Zakhvatkin, 1975) is also primitive for them. However, many amphibians possess direct development, in which the most part of ontogenesis takes place in the egg, and a miniature copy of the adult adapted to the terrestrial mode of life comes into the world. Transition from the larval type to the direct one occurs several times independently in Apoda, Urodela, and Anura. Pathways and mechanisms of formation of the direct type, its evolutionary tendencies, and ontogenetic prerequisites of that transition are studied in the plethodontid urodelans herewith in details. It is observed that the entire process of initial formation and subsequent specialization of the direct type involves: 1) progressing displacement of ontogenesis into embryogenesis and loss of larval characters, 2) desynchronization of initially metamorphic transformations and processes with their progressive lost, 3) acceleration of the beginning of functional activity of the thyroid gland, and 4) subsiding of the role of thyroid hormones in the ontogenesis regulation. Transition to the direct development type involves similar kinds of ontogenetic transformations and regulations in both Anura and Urodela despite of their independent evolution. Respectively, mechanisms of that transition are universal for the amphibians. The ontogenetic prerequisites of that transition are shown to be either significant dissociability of the larval and adult stages of ontogenesis (in anurans and plethodontid urodelans), or absence of the extreme larval specializations and respective sharp differences between larvae and adults (in extant Apoda and extinct labyrinthodonts and seymouriamorphs).  相似文献   

17.
Scott DE  Casey ED  Donovan MF  Lynch TK 《Oecologia》2007,153(3):521-532
In organisms that have complex life cycles, factors in the larval environment may affect both larval and adult traits. For amphibians, the postmetamorphic transition from the aquatic environment to terrestrial habitat may be a period of high juvenile mortality. We hypothesized that lipid stores at metamorphosis may affect an animal’s success during this critical transition period. We examined variation in total lipid levels among years and sites in recently metamorphosed individuals of two pond-breeding salamander species, the marbled salamander (Ambystoma opacum) and the mole salamander (A. talpoideum), with limited data for one anuran species (southern leopard frog, Rana sphenocephala). Lipid levels were allometrically related to body size and ranged from 1.9 to 23.8% of body dry mass. The two salamander species differed in lipid allocation patterns, with A. opacum apportioning a higher percentage of total lipid reserves into fat bodies than A. talpoideum. Species differences in lipid allocation patterns may primarily reflect that large metamorphs will mature as one-year olds, and, regardless of species, will alter lipid compartmentalization accordingly. We used mark–recapture data obtained at drift fences encircling breeding ponds for 13 A. opacum cohorts to estimate the proportion of postmetamorphic individuals that survived to breed (age 1–4) and the mean age at first reproduction. Regression models indicated that size-corrected lipid level at metamorphosis (i.e., lipid residuals), and to a lesser extent rainfall following metamorphosis, was positively related to adult survival. Snout-vent length at metamorphosis was negatively related to age at first reproduction. We suggest that lipid stores at metamorphosis are vital to juvenile survival in the months following the transition from aquatic to terrestrial habitat, and that a trade-off shaped by postmetamorphic selection in the terrestrial habitat exists between allocation to energy stores versus structural growth in the larval environment.  相似文献   

18.
Presence of the vomeronasal system in aquatic salamanders   总被引:4,自引:0,他引:4  
Previous reports have indicated that members of the proteid family of salamanders lack a vomeronasal system, and this absence has been interpreted as representing the ancestral condition for aquatic amphibians. I examined the anatomy of the nasal cavities, nasal epithelia, and forebrains of members of the proteid family, mudpuppies (Necturus maculosus), as well as members of the amphiumid and sirenid families (Amphiuma tridactylum and Siren intermedia). Using a combination of light and transmission electron microscopy, I found no evidence that mudpuppies possess a vomeronasal system, but found that amphiuma and sirens possess both vomeronasal and olfactory systems. Amphiumids and sirenids are considered to be outgroups relative to proteids; therefore, these data indicate that the vomeronasal system is generally present in salamanders and has been lost in mudpuppies. Given that the vomeronasal system is generally present in aquatic amphibians, and that the last common ancestor of amphibians and amniotes is believed to have been fully aquatic, I conclude that the vomeronasal system arose in aquatic tetrapods and did not originate as an adaptation to terrestrial life. This conclusion has important implications for the hypothesis that the vomeronasal organ is specialized for detection of non-volatile compounds.  相似文献   

19.
Johnson JR  Semlitsch RD 《Oecologia》2003,137(2):205-210
Concern over amphibian population declines and loss of terrestrial and aquatic habitat have emphasized the need to define habitat requirements for each stage in a species' life history. The realization that pond-breeding amphibians spend most of their lives in the terrestrial environment suggests the need to protect terrestrial as well as aquatic habitat. Many studies on amphibian populations have focused on emigration from breeding sites to define habitat use; however these studies do not typically elucidate terrestrial activities of adults within the breeding season. We measured colonization rates of artificial pools by gray treefrogs (Hyla versicolor) at multiple distances from natural breeding ponds. We found a non-random distribution of egg deposition among distances, with 95% of eggs deposited within 15 m of the breeding pond. Additionally, we found that the time to first colonization of artificial pools increased with respect to distance. Our results indicate that adult gray treefrogs may travel up to 200 m within a breeding season, and that multiple breeding ponds may be considered part of a single population. We suggest that a minimum core terrestrial habitat of 60 m surrounding breeding sites is appropriate for protection of local populations of gray treefrogs.  相似文献   

20.
ABSTRACT: BACKGROUND: Transitions in habitats and feeding behaviors were fundamental to the diversification of life on Earth. There is ongoing debate regarding the typical directionality of transitions between aquatic and terrestrial habitats and the mechanisms responsible for the preponderance of terrestrial to aquatic transitions. Snail-killing flies (Diptera: Sciomyzidae) represent an excellent model system to study such transitions because their larvae display a range of feeding behaviors, being predators, parasitoids or saprophages of a variety of mollusks in freshwater, shoreline and dry terrestrial habitats. The remarkable genus Tetanocera (Tetanocerini) occupies five larval feeding groups and all of the habitat types mentioned above. This study has four principal objectives: (i) construct a robust estimate of phylogeny for Tetanocera and Tetanocerini, (ii) estimate the evolutionary transitions in larval feeding behaviors and habitats, (iii) test the monophyly of feeding groups and (iv) identify mechanisms underlying sciomyzid habitat and feeding behavior evolution. RESULTS: Bayesian inference and maximum likelihood analyses of molecular data provided strong support that the Sciomyzini, Tetanocerini and Tetanocera are monophyletic. However, the monophyly of many behavioral groupings was rejected via phylogenetic constraint analyses. We determined that (i) the ancestral sciomyzid lineage was terrestrial, (ii) there was a single terrestrial to aquatic habitat transition early in the evolution of the Tetanocerini and (iii) there were at least 10 independent aquatic to terrestrial habitat transitions and at least 15 feeding behavior transitions during tetanocerine phylogenesis. The ancestor of Tetanocera was aquatic with five lineages making independent transitions to terrestrial habitats and seven making independent transitions in feeding behaviors. CONCLUSIONS: The preponderance of aquatic to terrestrial transitions in sciomyzids goes against the trend generally observed across eukaryotes. Damp shoreline habitats are likely transitional where larvae can change habitat but still have similar prey available. Transitioning from aquatic to terrestrial habitats is likely easier than the reverse for sciomyzids because morphological characters associated with air-breathing while under the water's surface are lost rather than gained, and sciomyzids originated and diversified during a general drying period in Earth's history. Our results imply that any animal lineage having aquatic and terrestrial members, respiring the same way in both habitats and having the same type of food available in both habitats could show a similar pattern of multiple independent habitat transitions coincident with changes in behavioral and morphological traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号