首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对湖北双蝴蝶大孢子发生、雌配子体形成、受精、胚及胚乳发育过程进行了解剖学观察研究。结果显示:(1)子房2心皮,1室,侧膜胎座,薄珠心,单珠被,倒生胚珠,胚珠列数为4列 大孢子母细胞减数分裂形成的4个大孢子多呈直线形排列,少数为“T”形四分体,合点端的大孢子具功能 胚囊发育为蓼型 3个反足细胞宿存至8-细胞原胚。(2)珠孔受精 胚乳发育为核型 胚发育为茄型。(3)果实成熟时,种子发育至球形胚阶段。  相似文献   

2.
黄衡宇  龙华  易婷婷  李鹂 《植物研究》2009,29(6):665-673
对獐牙菜大孢子发生、雌配子体形成、受精、胚及胚乳发育过程进行了研究。主要结果如下:子房2心皮,1室,4列胚珠,侧膜胎座;薄珠心,单珠被,倒弯生胚珠。大孢子母细胞减数分裂形成4个大孢子直线形排列,合点端的大孢子具功能,胚囊发育为蓼型。3个反足细胞宿存,每个细胞均多核和异常膨大,反足吸器明显,并在胚乳之外形成染色较深的类似“外胚乳”的结构。珠孔受精,受精作用属于有丝分裂前类型。胚乳发育为核型;胚胎发育为茄型。果实成熟时,种子发育至球形胚阶段。反足细胞在龙胆科一些短命植物中的宿存与分裂具有重要的生殖适应与进化意义。  相似文献   

3.
对小蓬草(Conyza canadensis)大小孢子发生、雌雄配子体形成、受精、胚及胚乳发育过程进行了研究,主要结果如下:花药四室,药壁由表皮、药室内壁、中层和绒毡层组成.表皮退化;药室内壁宿存,细胞柱状伸长,纤维状加厚;中层细胞退化较早,在小孢子母细胞减数分裂开始时仅存残迹;绒毡层于小孢子母细胞减数第一次分裂前期开始原位变形退化,属于腺质型绒毡层;小孢子母细胞减数分裂为同时型,四分体的排列方式主要为四面体形和左右对称形;成熟花粉粒多为3细-胞花粉粒,偶见2细-胞花粉粒.子房下位,2心皮,1室,单胚珠,基生胎座;单珠被,薄珠心,倒生胚珠,具发达的珠被绒毡层.珠心表皮下分化出大孢子孢原细胞,孢原细胞直接发育为大孢子母细胞,大孢子母细胞减数分裂形成4个大孢子直线形排列,仅合点端的大孢子发育成功能大孢子母细胞,胚囊发育为蓼型.两个极核在受精前融合为次生核,珠孔受精.胚乳发育属于核型,胚胎发育为紫菀型;具胚乳吸器.  相似文献   

4.
小蓬草的胚胎学研究   总被引:2,自引:0,他引:2  
对小蓬草(Conyzacanadensis)大小孢子发生、雌雄配子体形成、受精、胚及胚乳发育过程进行了研究,主要结果如下:花药四室,药壁由表皮、药室内壁、中层和绒毡层组成。表皮退化;药室内壁宿存,细胞柱状伸长,纤维状加厚;中层细胞退化较早,在小孢子母细胞减数分裂开始时仅存残迹;绒毡层于小孢子母细胞减数第一次分裂前期开始原位变形退化,属于腺质型绒毡层;小孢子母细胞减数分裂为同时型,四分体的排列方式主要为四面体形和左右对称形;成熟花粉粒多为3-细胞花粉粒,偶见2-细胞花粉粒。子房下位,2心皮,1室,单胚珠,基生胎座;单珠被,薄珠心,倒生胚珠,具发达的珠被绒毡层。珠心表皮下分化出大孢子孢原细胞,孢原细胞直接发育为大孢子母细胞,大孢子母细胞减数分裂形成4个大孢子直线形排列,仅合点端的大孢子发育成功能大孢子母细胞,胚囊发育为蓼型。两个极核在受精前融合为次生核,珠孔受精。胚乳发育属于核型,胚胎发育为紫菀型;具胚乳吸器。  相似文献   

5.
通过研究山薯的雌花及胚胎发育,为山薯的胚胎学研究以及杂交育种奠定基础。结果表明:山薯大部分为雌雄异株,海南岛的山薯雌花花期约3个月,为9月初至11月末。子房3室,每室有2个倒生胚珠;胚珠具厚珠心,双珠被。珠孔一端表皮下的孢原细胞逐渐发育为大孢子母细胞。大孢子母细胞减数分裂形成4个呈线形排列的大孢子,其中只有1个可以发育为功能大孢子。成熟的胚囊为7胞8核胚囊,其胚囊发育类型为蓼型。卵细胞的受精属于有丝分裂前型。其胚的发育类型为柳叶菜型,经过二细胞原胚、倒T型原胚、棒状胚、球形胚和梨形胚这5个发育阶段。胚乳的发育为核型。  相似文献   

6.
新疆阿魏的胚胎学研究   总被引:1,自引:1,他引:0  
采用常规石蜡制片技术,对新疆阿魏不同发育时期的花和果实进行了显微切片观察.结果表明:新疆阿魏小孢子母细胞的减数分裂为同时型,小孢子四分体为四面体型和十字交叉型,成熟花粉粒为3-细胞型.雌蕊2心皮合生成2室,中轴胎座,每子房室内产生上、下2个胚珠原基,其中,下方的原基正常发育,而上方的原基停止发育并最终解体,因此,每室仅产生一枚发育正常的倒生胚珠,单珠被,薄珠心,胚囊发育为蓼型;珠被绒毡层和珠孔塞发生于大孢子四分体时期,并于四核胚囊时分化完全,八核胚囊时珠被绒毡层细胞径向延长;3个成熟的反足细胞具双核.胚乳发育为核型,细胞壁较厚,细胞排列紧密,可保护胚免受机械损伤及防止胚失水.胚乳细胞中含有大量PAS染色呈正反应的物质,一些胚乳细胞异常生长形成细胞体积大、核及核仁均较大的巨形细胞.胚胎发生为茄型,四细胞原胚为直线形,十六细胞原胚的顶部由2排各4个细胞组成.成熟种子具胚乳.  相似文献   

7.
高山红景天胚胎学研究   总被引:8,自引:4,他引:4  
张萍  申家恒 《植物研究》1998,18(1):38-45
高山红景天(Rhodiola sachalinensis A.Bor.)具8个雄蕊,每个雄蕊有4个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型。形成的四分体为四面体形。花药壁由表皮、药室内壁、二层中层和绒毡层五层细胞组成,其发育方式为基本型。腺质型绒毡层,有些绒毡层细胞分裂形成不规则双层,少数细胞双核。二细胞型花粉。雌蕊由4心皮组成。边缘胎座,倒生胚珠,双珠被,厚珠心,胚珠发育中形成珠心喙。大孢子四分体线形或T -形,合点大孢子具功能。胚囊发育为蓼型。成熟胚囊中,卵细胞核、助细胞核均位于细胞的合点端,珠孔端具液泡;极核融合为次生核,并位于卵细胞合点端附近; 3个反足细胞退化。双受精属于有丝分裂前配子融合类型。胚的发育为石竹型;基细胞侵入珠孔端,形成囊状吸器。细胞型胚乳;初生胚乳核分裂形成两个细胞,其珠孔端的细胞发育成胚乳本体,合点端的细胞直接发育成具一单核的合点吸器。  相似文献   

8.
李鹂  黄衡宇 《广西植物》2015,35(5):631-640
利用石蜡切片技术,对川东獐牙菜(Swertia davidii)的胚胎发育过程进行显微观察,并根据现有资料,对獐牙菜属的几种植物进行了比较胚胎学研究。结果表明:川东獐牙菜花药四室,药壁发育为基本型,绒毡层异型起源,为腺质绒毡层,发育后期药室内观察到的绒毡层核是早期该层细胞有丝分裂凸入药室并原位退化形成的,中层细胞3层,药室内壁退化,花药壁表皮宿存,细胞柱状伸长,纤维状加厚;小孢母细胞减数分裂为同时型,四分体排列方式主要为四面体形和左右对称型,少数为"T"形和十字交叉形,成熟花粉为2-细胞类型;子房2心皮、1室,侧膜胎座;薄珠心,单珠被,倒弯生胚珠,大孢子母细胞减数分裂形成4个大孢子直线形排列,合点端的大孢子具功能,雄配子体发育为蓼型;2个极核在受精前融合为1次生核,合点端3个反足细胞宿存,每个细胞均多核和异常膨大,形成明显的反足吸器,并在胚乳之外形成染色较深的类似"外胚乳"结构;珠孔受精,受精作用属于有丝分裂前类型;胚乳发育为核型,胚胎发育为茄型;果实成熟时,种子发育至心形胚阶段;反足细胞在龙胆科一些短命植物中的宿存与分裂具有重要的生殖适应与进化意义。  相似文献   

9.
掌叶大黄胚胎学研究   总被引:3,自引:0,他引:3  
掌叶大黄(Rheum palmatum L.)的花药4室,单或复孢原。药壁发育为单子叶型。腺质绒毡层发育后期出现双核。小孢子四分体为四面体型,胞质分裂为同时型。成熟花粉为3细胞,表面具3条沟。子房1室,单胚珠,直生,两层珠被,由内珠被形成珠孔,厚珠心。单孢原,位于珠心表皮下。直线形或T形大孢子四分体。合点端的大孢子发育为蓼型胚囊。2个极核在受精前合并为次生核。3个反足细胞宿存。胚乳发育为核型,在球形胚末期开始形成细胞。合点端的胚乳核一直不形成细胞,而为游离核的胚乳吸器。在胚乳吸器和其它部位都发现胚乳核融合现象。胚的发育属于紫菀型。胚具小胚柄。成熟胚囊时期出现承珠盘,且存留时间很长,成熟胚期尚存痕迹。  相似文献   

10.
无距虾脊兰胚珠发育及种子形成研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用石蜡切片、半薄切片、扫描电镜技术对无距虾脊兰不同时期的子房(蒴果)进行研究.结果表明:(1)无距虾脊兰授粉后19d,胎座上分化出上万个胚珠原基,这些胚珠原基由1列细胞外包1层表皮细胞构成,其中胚珠原基内部顶端的细胞分化为孢原细胞,授粉后45 d,孢原细胞发育分化为大孢子母细胞.(2)无距虾脊兰成熟胚珠为倒生胚珠,双珠被,薄珠心,胚囊发育为蓼型,且胚珠的发育即便在同一个果实内也是不同步的.(3)受精后合子经过一次不均衡横裂形成基细胞和顶细胞;基细胞不参与胚体构成,分化为单细胞的胚柄,最后退化消失;顶细胞经多次分裂形成原球胚,胚胎发育类型为石竹型.(4)成熟种子呈纺锤形,由球形胚和内外双层种皮构成,双层种皮分别由内外珠被发育而来.  相似文献   

11.
Two types of embryonic development can be distinguished within nematodes, with a variable (Enoplia) or invariant (remaining species) cleavage. In the case of invariant cleavage two main variants of cell lineage are presented in nematodes, with the posterior (Rhabditea) or anterior (Dorylaimida) localization of endoderm material at the two-cell stage. This classification is in a good agreement with some modern nematode taxonomy and it is supported by molecular phylogeny studies. The variable cleavage is plesiomorphic. Traditional concept of "mosaic" cleavage is not applicable for nematodes as inductive interactions and a regulation of experimental interventions are usual attributes of any mode of nematode development. The representatives of order Rhabditida have almost identical cell lineage, but at the same time they have strong interspecific differences in mechanisms of ooplasmic segregation any early inductive interactions. The diversity of geometric patterns in the early cleavage, often at the level of individual random variations, is a usual characteristic of nematodes including species with the invariant cleavage. Thus, the early stages of nematode development are evolutionary very flexible, but at the course of embryonic development similarity of different species is progressively increased up to the uniform morphogenetic stages. The dynamics of variation in nematode development contradict to the von Baer's law but are in an agreement with the modern "hourglass model" (Doboul, 1994; Raff, 1986).  相似文献   

12.
13.
Leukocytes, of both the innate and adaptive lineages, are normal cellular components of all tissues. These important cells not only are critical for regulating normal tissue homeostasis, but also are significant paracrine regulators of all physiologic and pathologic tissue repair processes. This article summarizes recent insights regarding the trophic roles of leukocytes at each stage of mammary gland development and during cancer development, with a focus on Murids and humans.Mammary gland development can be divided into discrete phases. An initial analge is laid down from the milk-line during embryonic development resulting in a minimal ductal structure emanating from the nipple. Development of this anlage into a ductal tree is reactivated postnatally by exposure to the female sex steroid hormone estradiol-17β (E2), whose synthesis begins upon entry into puberty. In mice, this occurs at about 3 wk of age and is characterized by the formation of terminal end buds (TEB) at the ends of the ducts. These TEBs are clublike multilaminate epithelial structures that are the proliferative engines that drive mammary development. These structures also contain the mammary stem cells whose progeny differentiate into luminal and myoepithelial cells. The TEB structures disappear on their encounter with the edge of the fat pad and turn into terminal end-ducts (TED) that cease proliferation and which are bilaminar. As the primary branches grow out through the fat pad, secondary branches form to generate the mature tree that in mice is completed about 8 wk of age coincident with sexual maturity. At each estrus cycle thereafter, there is further development of the secondary branches and dependent on mouse strain, a degree of lobuloalveolar development. The next major phase of growth is during pregnancy in response to progesterone and prolactin when there is significant secondary branching morphogenesis, and the generation of the milk producing lobuloalveolar structures sprouting from these branches. At the end of the process, the gland is filled with ducts and alveolar structures with a commensurate loss of adipocytes. After birth and on suckling, lactation occurs with its effect on the secretory structure of alveoli that flatten to surround a milk-filled lumen. Weaning terminates the lactational process and the gland involutes to re-form a virgin-like structure to begin the cycle again during the next pregnancy (Daniel and Silberstein 1987; Richert et al. 2000; Neville et al. 2002). Every stage of mammary epithelial development is accompanied by changes in the surrounding stroma. This stroma is populated by many immune cells particularly those of the innate system. Although these cells undoubtedly have a role in immunological responses especially during lactation (Paape et al. 2002; Atabai et al. 2007), this review will concentrate on the trophic roles of these hematopoietic cells at each stage of development and during cancer development, with a focus on Murids and humans.  相似文献   

14.
Morphogenesis of the olfactory organ is followed with a light microscopy method in silver carp Hypophthalmichthys molitrix, common carp Cyprinus carpio, Eurasian minnow Phoxinus phoxinus, shemaya Alburnus chalcoides, zebra danio Danio rerio, and bitterling Rhodeus sericeus amarus. In these fishes with different reproductive ecology, the olfactory organ develops in a similar way, and it is characterized by a similar structure in the representatives of different species of the same body length. Morphological features revealed in different species are not numerous, and they are not associated with the development of main structures of the olfactory organ. However, the interspecific differences can be connected with different developmental rates of these structures. Based on developmental rate of the olfactory organ, the studied species are divided into three groups with (1) accelerated development (the litophils, Eurasian minnow and shemaya); (2) moderate development (a pelagophil, silver carp, and the phitophils, common carp and zebra danio; and (3) retarded development (an ostracophil, bitterling). The differences in the degree of development of the olfactory organ in the species from various ecological groups are particularly evident to the beginning of the juvenile period. The appearance of all main structures of the olfactory organ is completed in the litophils at the onset of the second juvenile step (XVII); that in the pelagophils and phitophils is by the end of this step, that in ostracophils is substantially later (young of the current year), and that in zebra danio is to the beginning of sexual maturation. In the studied species, olfactory organ becomes differentiated/formed at different age and at various morphological states of the progeny, but at similar body size (29–30 mm). Thus, the body length of carps can be regarded as an indicator of a level of morphological development of the olfactory organ.  相似文献   

15.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

16.
Physiological constraints in insects are related to several large-scale processes such as species distribution and thermal adaptation. Here, we fill an important gap in ecophysiology knowledge by accessing the relationship between temperature and embrionary development time in four dragonfly species. We evaluated two questions (1) what is the effect of temperature on the development time of Odonata eggs, and (2) considering a degree-day relationship, could a simple linear model describe the dependence of embrionary development time on temperature or it is better described by a more complex non-linear relation. Egg development time of Erythrodiplax fusca (Rambur), Micrathyria hesperis Ris, Perithemis mooma Kirby, and Miathyria simplex (Rambur) (Odonata: Libellulidae) were evaluated. We put the eggs at different temperatures (15, 20, 25, and 30°C) and counted the number of hatched larvae daily. A nonlinear response of the development to the temperature was found, differing from the expected pattern for standard degree-day analysis. Furthermore, we observed that there is a similar process in the development time and hatching synchronization between species, with all species presenting faster egg development at high temperatures. Species-specific differences are more evident at lower temperatures (15°C), with no egg development in M. simplex. Only E. fusca was relatively insensitive to temperature changes with similar hatching rates in all treatments.  相似文献   

17.
Taken as a composite, the meaning of the composite term "genetic program"-widely taken to suggest an explanation of biological development - simultaneously depends upon and underwrites the particular presumption that a "plan of procedure" for development is itself written in the sequence of nucleotide bases. Is this presumption correct? I want to argue that, at best, it must be said to be misleading, and at worst, simply false: To the extent that we may speak at all of a developmental program, or of a set of instructions for development, in contra-distinction to the data or resources for such a program, current research obliges us to acknowledge that these "instructions" are not written into the DNA itself (or at least, are not all written in the DNA), but rather are distributed throughout the fertilized egg. I will argue that the notion of genetic program depends upon, and sustains, a fundamental category error in which two independent distinctions, one between "genetic" and "epigenetic," and the other, between program and data, are pulled into mistaken alignment. The net effect of such alignment is to reinforce two outmoded associations: on the one hand, between "genetic" and active, and, on the other, between "epigenetic" and passive. J. Exp. Zool. (Mol. Dev. Evol.) 285:283-290, 1999.  相似文献   

18.
Galactoside-binding lectin has been isolated from whole Xenopus laevis embryos and tadpoles at four development stages: st. 24–26, 32, 41 and 47. The main lectin activity at st. 24–26 is -galactoside specific, producing a 34/35.5K doublet on SDS-PAGE. Later in development, lectin activities specific for a wide range of other sugars appear concommitant with the detection of a number of new protein bands on SDS-PAGE gels. The greatest variety of new lectin activities exists at st. 32 when lectins specific for all of the main sugar families found in nature are detected. After this stage and up to st. 47 (the beginning of metamorphosis), fewer different lectin activities are again detected. The results suggest that a complex, developmentally regulated battery of different lectins are present during early Xenopus development, perhaps with stage-specific roles to play in the control of tissue morphogenesis.  相似文献   

19.
20.
Summary Formation of melanosomes in melanophores of a teleost, Oryzias latipes, was studied by means of electron microscopy. Two distinct types of premelanosomes are observed in the same cell: (i) multivesicular premelanosomes, which later develop into melanosomes with electron-lucent hollows in the center, appear at early embryonic stages; (ii) premelanosomes with highly organized, fibrous internal structure are formed at later stages of development and give rise to melanosomes with a filamentous center. Melanosomes are generally ellipsoid in shape, and the difference in the dimensions of fibrillar premelanosomes, melanosomes in the cells at younger developmental stages and those developed fully in melanophores of adults indicates that these organelles grow during development. The growth is achieved by fusion of small unmelanized vesicles or fibrillar premelanosomes to preformed melanosome and by fusion of two or more premelanosomes to form a larger organelle. The addition of the matrix of fibrillar premelanosomes around preformed melanosomes, which are derived from either multivesicular or fibrillar premelanosomes, forms a concentric outer deposit, and the fusion of small vesicles produces electron-lucent pits which are scattered irregularly in mature melanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号