首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ontogenetic stages of the African catfish Clarias gariepinus have been used to describe and discuss the ontogeny of the hyoid musculature. During ontogeny, an asynchrony in the development of the muscles is observed: the intermandibularis and protractor hyoidei are the first to develop and which bear their insertions, followed by the hyohyoideus inferior and the sternohyoideus. The hyohyoideus abductor and adductor muscles are the last of the hyoid muscles to develop. In the juvenile stage (136.2 mm SL specimen), the intermandibularis is still present. The protractor hyoidei is well developed, as it may play an important role in the opening of the mouth, the elevation of the hyoid bars and, as a typical catfish feature, the displacement of the mandibular barbels. The protractor hyoidei arises as three pairs of muscle bundles (a pars ventralis, a pars lateralis and a pars dorsalis), of which the pars ventralis and the pars lateralis become fused to each other. This fusion gives rise to four different fields of superficial fibres for the manipulation of the mandibular barbels. The pars dorsalis, with its tendinous insertion, may be of more importance for mouth opening and/ or hyoid elevation. The hyohyoid muscle is well differentiated into an inferior, abductor and adductor muscles, acting on the hyoid bars, the branchiostegal rays and the opercular bone.  相似文献   

2.
Species of Hexarthra and Polyarthra are freshwater rotifers with well-known escape behaviors that result from interactions with planktonic predators. Both rotifers bear a suite of mobile appendages that function in evasive maneuvers and saltatory jumps through the water column, but the anatomical and functional bases of these actions are poorly understood. Here, we use a combination of phalloidin staining, confocal laser scanning microscopy, and video analysis to describe the morphology of the somatic muscles that supply the mobile appendages in order to understand how they function in escape behavior. Results show that species of Hexarthra, which bear six radially distributed limbs, possess a highly complex trunk musculature that supplies the inside of each limb with its own abductor and adductor muscles, i.e., a direct muscle supply. The singular dorsal and ventral limbs each receive a pair of large abductor and adductor muscles (four muscles total per limb), while the paired dorsolateral and ventrolateral limbs each receives three muscles (two abductors, one adductor per limb). Contraction of the abductor muscles creates a power stroke in the form of an anterior sweep of the limbs, which leads to a three-dimensional tumbling of the rotifer through the water column. Alternatively, species of Polyarthra possess 12 blade-like appendages that are arranged into four equal bundles; each bundle receives an indirect muscle supply that attaches to the shoulder of the paddles. A single longitudinal paddle muscle supplies each dorsolateral bundle, while a pair of longitudinal paddle muscles supplies each ventrolateral bundle. Contraction of these muscles, whether singly or in concert, functions to abduct the paddles in a power stroke, leading to rotation of the body and movement of the rotifer. The recovery stroke is hypothesized to be a multi-step process that begins with reorientation of the appendages prior to adduction, followed by contraction of various muscles to antagonize the paddle muscles. In total, these observations reveal novel complexities in the rotifer muscular system that aids our understanding of the biophysics of predator avoidance in appendage-bearing rotifers.  相似文献   

3.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

4.
The intrinsic and extrinsic muscles are considered to stabilize the foot and contribute to propulsion during walking. This study aimed to clarify the functional relationship between intrinsic and extrinsic muscles during walking. Thirteen healthy men participated in this study. The muscle activities of the intrinsic muscles (quadratus plantae and abductor hallucis), and the extrinsic muscles (flexor hallucis longus, flexor digitorum longus, and tibialis posterior) were measured using fine-wire and surface electromyography during walking. The muscle onset timing after foot contact was calculated and compared among muscles using the one-way ANOVA. The stance phase was divided into early and late braking, and early and late propulsion phases. Muscle activity among phases was compared using repeated-measures ANOVA. The onset time of the abductor hallucis was significantly earlier than those of the flexor digitorum longus and tibialis posterior. The quadratus plantae demonstrated significantly earlier onset than that of the tibialis posterior. In the late propulsion phase, the activity of extrinsic muscles decreased, whereas intrinsic muscles were continuously active. Early activation of the intrinsic muscles may stabilize the foot for efficient torque production by the extrinsic muscles. Furthermore, the intrinsic muscles may contribute to the final push-off after the deactivation of extrinsic muscles.  相似文献   

5.
The pectoral spine of catfishes is an antipredator adaptation that can be bound, locked, and rubbed against the cleithrum to produce stridulation sounds. We describe muscle morphology of the pectoral spines and rays in six species in four genera of North American ictalurid catfishes. Since homologies of catfish pectoral muscles have not been universally accepted, we designate them functionally as the spine abductor and adductor and the arrector dorsalis and ventralis. The four muscles of the remaining pectoral rays are the superficial and deep (profundal) abductors and adductors. The large spine abductor and spine adductor are responsible for large amplitude movements, and the smaller arrector dorsalis and arrector ventralis have more specialized functions, that is, spine elevation and depression, respectively, although they also contribute to spine abduction. Three of the four spine muscles were pennate (the abductor and two arrectors), the spine adductor can be pennate or parallel, and ray muscles have parallel fibers. Insertions of pectoral muscles are similar across species, but there is a shift of origins in some muscles, particularly of the superficial abductor of the pectoral rays, which assumes a midline position in Ictalurus and increasingly more lateral placement in Ameiurus (one quarter way out from the midline), and Pylodictis and Noturus (half way out). Coincident with this lateral shift, the attachments of the hypaxial muscle to the ventral girdle become more robust. Comparison with its sister group supports the midline position as basal and lateral migration as derived. The muscles of the pectoral spine are heavier than muscles of the remaining rays in all species but the flathead, supporting the importance of specialized spine functions above typical movement. Further, spine muscles were larger than ray muscles in all species but the flathead catfish, which lives in water with the fastest currents. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
To distinguish experimentally between motor nerve activity destined for vocal cord abductor muscles and that bound for muscles that adduct the cords, we recorded efferent activities of intralaryngeal branches of the recurrent laryngeal nerve (RLN) in decerebrate, vagotomized, paralyzed, ventilated cats. Activities of the whole RLN and phrenic nerve were also recorded. Nerve activities were assessed at several steady-state end-tidal O2 and CO2 concentrations. The nerve to the thyroarytenoid (TA) muscle, a vocal cord adductor, was only slightly active under base-line (normocapnic, hyperoxic) conditions but in most cats developed strong activity during expiration in hypocapnia or hypoxia. In severe hypocapnia, phasic expiratory TA activity persisted even during phrenic apnea, indicating continuing activity of the respiratory rhythm generator. The nerve to the posterior cricoarytenoid (PCA) muscle, the vocal cord abductor, was always active in inspiration but often showed expiratory activity as well. This expiratory activity was usually enhanced by hypercapnia and often inhibited by hypoxia. The results are consistent with previous electromyographic findings and emphasize the importance of distinguishing abductor from adductor activity in studies of laryngeal control.  相似文献   

7.
Summary Marthasterias glacialis bears two kinds of pedicellariae. The straight pedicellariae are single and occur everywhere on the asteroid body surface except in the ambulacral groove. The crossed pedicellariae are clustered on mobile structures (the rosettes) build around marginal and abactinal spines.Basically, each pedicellaria has a head and a stalk. A skeleton occurs only in the pedicellarial head. It consists of two valves and a basal piece. Muscular bundles are anchored on these skeletal ossicles. The straight pedicellariae have two pairs of adductor muscles (the inner and the outer adductors) and one pair of abductor muscles, these latter being weakly developed. Longitudinal muscle fibers occur all along the stalk of straight pedicellariae. The crossed pedicellariae have two pairs of adductor muscles (the distal and the proximal adductors) and two pairs of abductor muscles (the distal and the proximal abductors). The proximal adductors of crossed pedicellariae are homologous to the stalk muscles of straight pedicellariae.The pedicellariae are able to react to direct and indirect tactile stimuli. There is a great deal of individual variation among pedicellarial responses. Moreover, the reactions occur at random and lack coordination. The seemingly aberrant behavior of the pedicellariae is interpreted as a preventive activity that protects the asteroid body surface against unwanted materials and organisms.  相似文献   

8.
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.  相似文献   

9.

Background

Skeletal muscle wasting in acute lung injury (ALI) patients increases the morbidity and mortality associated with this critical illness. The contribution of laryngeal muscle wasting to these outcomes is unknown, though voice impairments and aspiration are common in intensive care unit (ICU) survivors. We evaluated the intrinsic laryngeal abductor (PCA, posterior cricoarytenoid), adductor (CT, cricothyroid) and limb (EDL, extensor digitorum longus) muscles in a mouse model of ALI.

Methods

Escherichia coli lipopolysaccharides were instilled into the lungs of adult male C57Bl6J mice (ALI mice). Limb and intrinsic laryngeal muscles were analyzed for fiber size, type, protein expression and myosin heavy chain (MyHC) composition by SDS-PAGE and mass spectroscopy.

Results

Marked muscle atrophy occurred in the CT and EDL muscles, while the PCA was spared. The E3 ubiquitin ligase muscle ring finger-1 protein (MuRF1), a known mediator of limb muscle atrophy in this model, was upregulated in the CT and EDL, but not in the PCA. Genetic inhibition of MuRF1 protected the CT and EDL from ALI-induced muscle atrophy. MyHC-Extraocular (MyHC-EO) comprised 27% of the total MyHC in the PCA, distributed as hybrid fibers throughout 72% of PCA muscle fibers.

Conclusion

The vocal cord abductor (PCA) contains a large proportion of fibers expressing MyHC-EO and is spared from muscle atrophy in ALI mice. The lack of MuRF1 expression in the PCA suggests a previously unrecognized mechanism whereby this muscle is spared from atrophy. Atrophy of the vocal cord adductor (CT) may contribute to the impaired voice and increased aspiration observed in ICU survivors. Further evaluation of the sparing of muscles involved in systemic wasting diseases may lead to potential therapeutic targets for these illnesses.  相似文献   

10.
11.
The configuration of the pectoral girdle bones and muscles of numerous catfishes was studied in detail and compared with that of other siluriforms, as well as of other teleosts, described in the literature. The pectoral girdle of catfishes is composed of only three bones, which probably correspond to the posttemporo-supracleithrum (posttemporal + supracleithrum), scapulo-coracoid (scapula + coracoid), and cleithrum of other teleosts. These latter two bones constitute the place of origin of the pectoral girdle muscles. Two of these muscles are related to the movements of the pectoral fin. These two muscles correspond, very likely, to the abductor superficialis and to the adductor superficialis of other teleostean fishes. In relation to the pectoral spine (thickened first pectoral fin ray), it is usually moved by three well-developed muscles, which are probably homologous with the arrector ventralis, arrector dorsalis, and abductor profundus of nonsiluriform teleosts. The morphological diversity and the plesiomorphic configuration of these muscles, as well as of the other catfish pectoral girdle structures, are discussed.  相似文献   

12.
In this study, UV (ultraviolet) and IR (infrared radiation) spectral analysis were integrated to identify the pigment in the adductor muscle scar of the Pacific oyster Crassostrea gigas. The pigment was extracted from the adductor muscle scars of cleaned oyster shells that were pulverized, hydrolyzed in hot hydrochloric acid, purified with diethyl ether, and dissolved in 0.01 mL/L NaOH. The maximum absorption of the pigment in the UV absorption spectrum within the range of 190–500 nm was observed between 210–220 nm. The UV absorbance decreased with increasing wavelength which was consistent with the UV spectral absorption characteristics of melanin. In addition, Fourier transform infrared spectroscopy scanning revealed characteristic absorption peaks that emerged near 3440 cm-1 and 1630 cm-1, which was consistent with infrared scanning features of eumelanin (a type of melanin). This study has demonstrated for the first time that the pigment in the adductor muscle scar of the Pacific oyster is melanin, hinting that the adductor muscle could be another organ pigmenting the mollusc shell with melanin other than mantle.  相似文献   

13.
T Homma  T Sakai 《Acta anatomica》1992,145(1):44-49
The thenar and hypothenar muscles as well as their supplying nerves were analyzed with an improved dissecting method. Among the four thenar muscles, the m. abductor pollicis brevis (AbPB) has a separate muscle belly, whereas the m. opponens pollicis (OP), the superficial and deep heads of the flexor pollicis brevis (sFPB and dFPB), and the adductor pollicis (AdP) are fused with each other to make a single mass (deep thenar muscle group). These muscles are innervated by branches of the recurrent nerve and the accessory recurrent nerve from the median nerve as well as by terminal branches of the deep branch (ramus profundus) of the ulnar nerve. These three nerves frequently form a loop within the deep thenar muscle group (thenar loop), and a branch to the OP and one to deep parts of the sFPB often make a smaller loop (intrathenar loop), whereas the AbPB receives a separate nerve branch. Among the hypothenar muscle, the m. abductor digiti minimi and the m. flexor digiti minimi brevis are fused with each other, and their supplying nerves frequently form a loop in these muscles (intrahypothenar loop), whereas the m. opponens digiti minimi is separated from the others and receives a separate nerve branch. In the distribution pattern of supplying nerves to the thenar and hypothenar muscles, we find regularities in that they branch off in a regular manner from the ulnar and the median nerve, and that nerve branches to those muscles with fused bellies frequently communicate with each other to make loops.  相似文献   

14.
The separated shell plates with the rearranged musculature (adductor muscle) is a novelty for bivalves. Despite its importance in the bivalve bodyplan, the development of the anterior adductor muscle remains unresolved. In this study, we investigate the myogenesis of the bivalve species Septifer virgatus to reveal the developmental origin of the larval muscles in bivalves, focusing on the anterior adductor muscle. We observed that larval retractor muscles are differentiated from the ectomesoderm in bivalves, and that the anterior adductor muscles are derived from primordial larval retractor muscles via segregation of the myoblast during the veliger larval stage. Through the comparative study of myogenesis in bivalves and its related taxa, gastropods, we found that both species possess myoblasts that emerge bilaterally and later meet dorsally. We hypothesize that these myoblasts, which are a major component of the main larval retractor in limpets, are homologous to the anterior adductor muscle in bivalves. These observations imply that the anterior adductor muscle of bivalves evolved as a novel muscle by modifying the attachment sites of an existing muscle.  相似文献   

15.
The location of the trigeminal motoneurons of the jaw muscles has been determined in the brainstem of the mallard utilizing retrograde axonal transport of horseradish peroxidase (HRP). Injections with HRP into the jaw muscles or application of HRP to the mandibular nerve showed that the trigeminal motor nucleus can be subdivided into five subnuclei, mV1-mV5. Three functional groups of jaw muscles are represented in separate subnuclei. The most lateral subnucleus mV2 innervates all but one adductor muscles, the intermediate mV1 innervates the pterygoid muscles + one adductor and the medial mV4 the two protractor muscles. The most ventral subnucleus mV3 contains the neurons innervating two extrinsic tongue muscles as well as some perikarya of adductor muscles. Subnucleus mV5 lies dorsomedial to mV4 and contains the motoneurons of the depressor muscle of the lower eye lid. Elements of the proprioceptive system, viz. presumptive gamma-neurons and mesencephalic trigeminal nucleus cells, could also be visualized. The topological and functional aspects of the subdivision of the motor nucleus are discussed.  相似文献   

16.
Male genital structures and muscles of bombycoid moths have repeatedly been misidentified in the literature. Furthermore, the genital structures of some bombycoid families, such as the poorly known Australo-New Guinean Anthelidae, have essentially remained unstudied. Based on comparative morphology, this study details the principal arrangements of male genital sclerites and muscles in all bombycoid families, with particular focus on basic structures and their modifications in Anthelidae. Emphasis is placed on the homology of and fusions between these structures and their function, providing a basis for the interpretation of modifications in future phylogenetic and taxonomic studies. This includes the unique fusion of gnathos and valvae in several bombycoid families, the arrangement and extent of the fused tegumen and vinculum, as well as the homology of the "transtilla". Further, a modification of the valve adductor muscle (the segment IX sternum to valva muscle, m4) widely regarded as a synapomorphy of Bombycoidea is demonstrated to be non-existent, as is the presumed presence of the valve abductor muscle (the segment IX tergum to valva muscle, m2) in Saturniidae.  相似文献   

17.
The mechanism for fatigue of the adductor pollicis was studied in normal subjects during maximal voluntary contractions (MVC) sustained for 90-100 s, by comparing the force and electrical response of this muscle to voluntary motor drive with that obtainable with artificial stimulation of the ulnar nerve. The adequacy of nerve stimulation was checked by recording simultaneously the electrical response of a nonfatiguing muscle, the abductor of the small finger. The decrease in force and in the natural electrical activity with fatigue was accompanied by a parallel decrease in the amplitude of synchronous muscle action potentials (M waves) evoked by artificial stimulation of the ulnar nerve at different frequencies. The decline in M-wave amplitude in the adductor pollicis was not due to a submaximal nerve stimulation, since the amplitudes recorded simultaneously from the nonfatiguing abductor digiti minimi remained unchanged. The force and the electrical responses from the adductor pollicis recovered in parallel with a half time of approximately 1 min. These results suggest that the loss of force of the adductor pollicis with fatigue and its subsequent recovery are largely determined by the extent of neuromuscular propagation failure. The slow recovery of the M-wave amplitude during repetitive stimulation suggests that it may be related to some aspect of muscle metabolism.  相似文献   

18.
Abstract:  The exceptionally preserved hyolithids Gompholites striatulus , Maxilites robustus , Maxilites snajdri and Maxilites sp. are described with particular emphasis on helen and muscle scar morphology. These two aspects of hyolithid morphology have remained controversial. In life position, each helen curved ventrally. When the operculum closed the aperture of the conch, each helen was locked at the commissure slit with its dorsal edge tilted forward. Inside the conch, it was held in the dorsal apertural plane and clear of the inner surface of the operculum. Previously unidentified muscle scars are described from both the operculum and the conch. Dorsal scars on the conch aperture held muscles directed to the operculum. Comparative study of the muscle insertion pattern indicates that hyolithids did not have serially arranged muscles and that all hyolithids may have had a common skeleto-muscular system. The arrangement of the muscle scars with respect to the helens suggests that the latter were capable of relatively complex movements and could have been used to propel the organism over the substrate. The general morphology and orientation of the helens suggests that in addition they functioned to stabilize the organism on the sea-floor.  相似文献   

19.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion.  相似文献   

20.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号