首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Behavioural differences among prey species may result from evolutionary adaptations that facilitate coexistence with different predators and influence vulnerability to predators. It has been hypothesised that prey species modify their behaviour in relation to the risk posed by particular predators. 2. We examined the relationship between anti‐predator behaviour and predation risk in five species of larval odonates in combination with three predatory fish species (perch, gudgeon and rudd) that differ in foraging behaviour. The odonates, Platycnemis pennipes, Coenagrion puella, Lestes sponsa, Sympetrum striolatum and Libellula depressa, differ with regard to their life cycle and habitat, including water depth, occurrence in temporary ponds and co‐existence with fish. 3. The odonate species differed in their response to fish: (i) Two species showed a flexible response. Larval C. puella reduced activity in the presence of fish, regardless of species, whereas L. depressa altered their activity only in the presence of gudgeon. (ii) Independent of fish species, all odonates except L. depressa exhibited spatial avoidance of fish. This was interpreted as a more general anti‐predator response. (iii) In some cases the odonates showed no response to predators and their behaviour was thus independent of predation risk. 4. Our results confirm that all odonates responded to the presence of at least some predatory fish, and that some odonate species discriminated between fish species. However, we found no significant correlation between behavioural modifications and predation risk, indicating that anti‐predator responses and predation risk depend on the particular predator and the species being preyed on.  相似文献   

2.
Summary Two congeneric damselfly species, Enallagma traviatum and E. aspersum, dominate the littoral macroinvertebrates of Bays Mountain Lake and of the adjacent fish-free Ecology Pond, respectively (northeastern Tennessee, USA). Extending previous experimental studies, we test seven hypotheses concerning the role of fish (bluegill sunfish, Lepomis macrochirus) and larvaldragonfly (Anax junius) predation, competitive effects on damselflies, and the interaction between competition and predation, in determining invertebrate dominance in these communities. Three types of experiments were conducted: an enclosure experiment within Ecology Pond, an outdoor replicated tub experiment, and a laboratory behavior experiment. The in-situ enclosure experiment showed that E. traviatum larvae were more susceptible to Anax predation than were E. aspersum larvae; a tendency toward greater vulnerability to fish of E. aspersum compared with E. traviatum was not statistically significant. The outdoor tub experiment confirmed both of these trends with statistically significant results. In the tubs, both predators inhibited feeding of both zygopterans (as indicated by reduced fecal mass), particularly for E. aspersum in the presence of fish. This effect appears to have been primarily indirect, mediated through exploitation of the zooplankton. We also detected competitive effects of E. traviatum on E. aspersum: E. traviatum reduced the emergence and increased the exposure above the substrate of E. aspersum. In the absence of predators, E. traviatum inhibited feeding of E. aspersum via interference. In the laboratory behavior experiment, predators inhibited crawling by E. aspersum. E. aspersum was more exposed than was E. traviatum; it swam and crawled more than did E. traviatum, considerably increasing these movements at night. Over all, E. traviatum consistently appeared to be the more cryptic of the two species, and E. aspersum appeared to be much more active. Our results suggest an explanation for the clear difference in structure between communities like Bays Mountain Lake and Ecology Pond: predaceous fish eliminate large invertebrate predators and shift the community toward cryptic forms at relatively low densities, reflecting the effects of both predation and exploitation competition. In the absence of fish, large invertebrate predators are less able to deplete littoral invertebrates but may favor the more active forms, perhaps because these are better able to avoid invertebrate predators.  相似文献   

3.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

4.
A series of laboratory experiments compared predation rates of three native eastern Australian mangrove fish species (Psuedomugil signifer, Hyseleotris galii, Pseudogobius sp.) and the exotic Gambusia holbrooki on 2nd and 4th instar Aedes vigilax larvae, in order to determine their potential as mosquito control agents in mangrove forests. All four species preyed on significant numbers of both 2nd and 4th instar larvae. All showed a similar pattern of larval consumption, gorging on larvae in the first hour of each experiment, before reducing to a relatively constant background feeding rate. Gambusia holbrooki showed the highest larval consumption rates, but is unsuitable as a mosquito control agent due to it being an exotic pest species in Australia. Of the three native species, P. signifer showed the greatest potential as a mosquito control agent, having consumption rates comparable to G. holbrooki, and was the only species that did not show a significant reduction in larval consumption in the night experiments.  相似文献   

5.
S. M. Dixon  R. L. Baker 《Oecologia》1988,76(2):200-205
Summary We used laboratory studies to examine the role of predation risk and cost of anti-predator behaviour in determining the behavioural response of several larval instars of Ischnura verticalis to a fish predator (Lepomis gibbosus). Smaller larvae were less susceptible to fish predation than larger larvae. Smaller larvae depressed movement to a greater degree in the presence of fish than did larger larvae; large larvae were generally less active than small larvae regardless of fish presence. Reduced feeding resulted in smaller larvae suffering more in terms of reduced growth than did large larvae. In general, our results tend to support the hypothesis that individuals that suffer high costs of anti-predator behaviour but little risk of predation may only exhibit anti-predator behaviours in the presence of predators, whereas individuals with a higher risk of predation and a lower cost of anti-predator behaviour may evolve anti-predator mechanisms that are in effect even in the absence of predators.  相似文献   

6.
  • 1 We examined the potential selective pressures exerted by different types of predators on morphological prey defences using the case-building larvae of the limnephilid caddisfly, Limnephilus frijole. The predators were a predaceous minnow, Gila pandora, and an aeschnid dragonfly naiad, Oplonaeschna armata.
  • 2 The influence of larval case design on vulnerability to predators was evaluated in a series of laboratory experiments. Larval L. frijole were collected from a stream without fish or dragonflies. In the laboratory, larvae still occupying their field-built cases were exposed to the two predators, with which L. frijole co-occurs in other streams. Following 24 h exposure of caddisfly larvae to a specific predator, the pre-trial case length, case strength, case width, and case composition of victims and survivors were compared.
  • 3 Principal components analysis (PCA) indicated substantial independent variation for all four case parameters in the study population. The cases of larvae surviving exposure to either dragonfly naiads or fish were significantly stronger and wider than cases of victims of predation. Cases of survivors were also longer and had a greater mineral fraction than those of victims, but differences were either marginally significant or not significant.
  • 4 These results demonstrate that specific aspects of case design affect the vulnerability of caddisfly larvae. In addition, predaceous fish and predaceous invertebrates, using different predation techniques, may exert similar selective pressures on these defenses. Case aspects influencing vulnerability in these experiments are broadly consistent with natural variation in case design associated with predator-rich and predator-free habitats for related caddisfly species.
  相似文献   

7.
C. L. Pierce 《Oecologia》1988,77(1):81-90
Summary Dragonfly larvae (Odonata: Anisoptera) are often abundant in shallow freshwater habitats and frequently co-occur with predatory fish, but there is evidence that they are underutilized as prey. This suggests that species which successfully coexist with fish may exhibit behaviors that minimize their risk of predation. I conducted field and laboratory experiments to determine whether: 1) dragonfly larvae actively avoid fish, 2) microhabitat use and foraging success of larvae are sensitive to predation risk, and 3) vulnerability of larvae is correlated with microhabitat use. I experimentally manipulated the presence of adult bluegills (Lepomis macrochirus) in defaunated patches of littoral substrate in a small pond to test whether colonizing dragonfly larvae would avoid patches containing fish. The two dominant anisopteran species, Tetragoneuria cynosura and Ladona deplanata (Odonata: Libellulidae), both strongly avoided colonizing patches where adult bluegills were present. Laboratory experiments examined the effects of diel period and bluegills on microhabitat use and foraging success, using Tetragoneuria, Ladona and confamilial Sympetrum semicictum, found in a nearby fishless pond. Tetragoneuria and Ladona generally occupied microhabitats offering cover, whereas Sympetrum usually occupied exposed locations. Bluegills induced increased use of cover in all three species, and use of cover also tended to be higher during the day than at night. Bluegills depressed foraging in Tetragoneuria and to a lesser extent in Ladona, but foraging in Sympetrum appeared unaffected. Other laboratory experiments indicated that Sympetrum were generally more vulnerable than Tetragoneuria or Ladona to bluegill predation, and that vulnerability was positively correlated with use of exposed microhabitats. Both fixed (generally low use of exposed microhabitats, diel microhabitat shifts) and reactive (predator avoidance, predator-sensitive microhabitat shifts) behavioral responses appear to reduce risk of predation in dragonfly larvae. Evidence indicates that vulnerability probably varies widely among species and even among instars within species, and suggests that spatial distributions of relatively vulnerable species may be limited by their inability to avoid predation.  相似文献   

8.
This paper is concerned with some aspects of the ecology of the southern green stink bug, Nezara viridula, in Hawaii. Dispersal studies on adults showed an asymetrical dispersal pattern. The rate of plant to plant to movement by the adults was 3.3–6.7 feet per day. Mortality studies showed that egg predation by ants, Pheidole megancephala, was as high as 80–90 per cent. Egg parasitism by Telenomus basalis was highest during February, 1965, and adult parasitism by Trichopoda pennipes was highest during July, 1964, to January of the following year. The population of N. viridula declined during May, 1964, to May, 1965. This decline occurred simultaneously with the decline in the number of eggs produced per female. It has been speculated that this reduction in egg production was caused by parasitism by T. pennipes.  相似文献   

9.
The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour) of pine sawfly larvae may be effective against ant predation. However, previous studies have tested their defences against very few species of ants, and few experiments have explored ant predation in nature. We studied how larval group size (groups of 5 and 20 in Neodiprion sertifer and 10, 20 and 40 in Diprion pini) and variation in levels of defence chemicals in the host tree (Scots pine, Pinus sylvestris) affect the survival of sawfly larvae. Food preference experiments showed that ants do eat sawfly larvae, although they are not their most preferred food item. According to our results, ant predation significantly increases the mortality rate of sawfly larvae. Larval mortality was minor on pine tree branches where ant traffic was excluded. We also found that a high resin acid concentration in the host tree significantly decreased the mortality of D. pini larvae when ants were present. However, there was no such relationship between the chemical concentrations of the host tree and larval mortality for N. sertifer. Surprisingly, grouping did not help sawfly larvae against ant predation. Mortality risk was the same for all group sizes. The results of the study seemingly contradict previous understanding of the effectiveness of defence mechanisms of pine sawfly against ant predation, and suggest that ants (Formica exsecta in particular) are effective predators of sawfly larvae.An erratum to this article can be found at  相似文献   

10.
The functional response of adult females of the predatory mites Euseius (Amblyseius) finlandicus and Amblyseius andersoni to larvae and adult females of the fruit tree red spider mite Panonychus ulmi was determined on apple and peach leaf disks in the laboratory at 25°C and 16:8 (L:D). For adult females of P. ulmi the predation efficiency of E. finlandicus was higher on peach than on apple, whereas that of A. andersoni was higher on apple than on peach. Efficiency of predation on larvae of P. ulmi by either predator did not differ significantly between apple and peach. On both plants, A. andersoni had a higher predation rate than E. finlandicus on larvae of P. ulmi. It is concluded that in the laboratory the host plant has a substantial effect on predation efficiency of A. andersoni and E. finlandicus when they preyed on adults but not when they preyed on larvae of P. ulmi.  相似文献   

11.
Predator foraging behaviour affects the outcome of enemy–enemy interactions. Using a combination of fieldwork and laboratory experiments, we show that intraguild predation may be important in the field distribution of generalist predators that share a common prey: the eggs (and larvae) of the leaf beetle Phratora vulgatissima, a major insect pest in coppicing willow plantations. We focused on a species from the hoverfly genus Parasyrphus (Syrphidae), which may exhibit large temporal and spatial variation in density. Predator and prey densities were quantified in 40 field plots in willow plantations. The likelihood of finding hoverfly eggs declined with increasing densities of two predatory mirids, Orthotylus marginalis and Closterotomus fulvomaculatus, which exhibit less mobile behaviour similar to that of hoverfly larvae. The density of a more mobile predatory bug species, the anthocorid Anthocoris nemorum, was not associated with hoverfly occurrence. These results corroborate the hypothesis that less mobile predators should be stronger intraguild predators than mobilepredators. Further partial support for this hypothesis was obtained in the laboratory study where individual predators were presented with clutches of P. vulgatissima eggs containing one hoverfly egg: the less mobile C. fulvomaculatus and O. marginalis tended to consume the hoverfly egg more readily than the more mobile A. nemorum. However, most individuals of all three bug species consumed the egg of the potential competitor – the syrphid – within 24 h. The field study also showed that hoverfly occurrence was positively associated with the density of their prey and with the presence of nearby forests. We conclude that intraguild predation, abundance of prey and the surrounding habitat affect the distribution of hoverflies in this system and should be considered when developing biological control methods.  相似文献   

12.
Introductions of the harlequin ladybird Harmonia axyridis into Belgium for aphid biological control have been followed by declines in native aphid natural enemies. We first examined, in laboratory and field conditions, the impact of larval mobility of either H. axyridis or Episyrphus balteatus, the most abundant native hoverfly in central Europe, on aphid suppression. The hoverfly larvae consumed more aphids (Megoura viciae) in a short term, whereas the ladybird ones were more efficient in a long term. We second investigated the intraguild interactions between H. axyridis and E. balteatus larvae and adults. In larva pairings between the two species in laboratory microcosms containing aphid (M. viciae) infested broad bean (Vicia faba) plants, H. axyridis had an intraguild predation (IGP) advantage over the hoverfly. When conspecific larvae were paired together on aphid‐infested plants, no cannibalism between them was detected. The presence of either H. axyridis or E. balteatus larvae on aphid‐infested plants negatively influenced the ovipositional behaviour of H. axyridis and E. balteatus females; lower numbers of laid eggs were recorded compared to control treatment. Moreover, eggs laid by E. balteatus females were also dropped as victims of predation mainly by H. axyridis larvae. Our results suggest that while the exotic ladybird was more efficient in aphid biological control, larvae and eggs of the native hoverfly species face increased IGP by H. axyridis, which would contribute, as a consequence, to the decline in E. balteatus population following invasion.  相似文献   

13.
We examined the response of benthic invertebrates to hypoxia and predation risk in bioassay and behavioral experiments. In the bioassay, four invertebrate species differed widely in their tolerance of hypoxia. The mayfly, Callibaetis montanus, and the beetle larva, Hydaticus modestus, exhibited a low tolerance of hypoxia, the amphipod, Gammarus lacustris, was intermediate in its response and the caddisfly, Hesperophylax occidentalis, showed high tolerance of hypoxia. In the behavioral experiments, we observed the response of these benthic invertebrates, which differ in locomotor abilities, to vertical oxygen and temperature gradients similar to those in an ice-covered pond. With adequate oxygen, invertebrates typically remained on the bottom substrate. As benthic oxygen declined in the absence of fish, all taxa moved above the benthic refuge to areas with higher oxygen concentrations. In the presence of fish mayflies increased activity whereas all other taxa decreased activity in response to hypoxia. Mayflies and amphipods remained in the benthic refuge longer and endured lower oxygen concentrations whereas the vertical distribution of caddisflies and beetle larvae was not influenced by the presence of fish. As benthic oxygen declined in the presence of fish, all but the beetle larva reduced activity over all oxygen concentrations compared to when fish were absent. As benthic oxygen continued to decline, mayflies and amphipods moved above the benthic refuge and were preyed upon by fish. Thus, highly mobile taxa unable to tolerate hypoxia (mayflies and amphipods) responded behaviorally to declining oxygen concentrations by migrating upward in the water column. Taxa that were less mobile (beetle larvae) or hypoxia-tolerant (caddisflies) showed less of a response. Taxa most vulnerable to fish predation (mayflies and amphipods) showed a stronger behavioral response to predator presence than those less vulnerable (caddisflies and beetle larvae). Because invertebrates differ in their ability to withstand hypoxia, episodes of winter hypoxia could have long-lasting effects on benthic invertebrate communities either by direct mortality or selective predation on less tolerant taxa.  相似文献   

14.
1. As part of a study designed to estimate the developmental costs of antipredator behaviour of larval chironomids, we used laboratory experiments to study effects of food and factors that could influence predation risk [presence of fish, cover from fish (simulated debris) and light level], on microhabitat selection by Chironomus tentans larvae in the third and fourth instar. 2. Larvae were more likely to build tubes where there was more food although their ability to move far to find food appeared limited. 3. Larvae did not avoid areas with fish and the presence of fish did not alter larval response to food. 4. Larvae avoided areas of cover (simulated debris) but cover did not alter larval response to food. 5. When provided with a choice between light and dark areas, larvae initially without tubes were found more often in the dark areas. Light level had no effect on location of larvae that had begun the experiment with tubes. 6. Results suggest the tubicolous life-style of larval Chironomus tentans limits their ability to select microhabitats that could alter their risk of predation.  相似文献   

15.
I used a combination of laboratory experiments and field surveys to examine the role that population-specific predation risk may play in shaping the life history strategy of a stream-dwelling isopod Lirceus fontinalis. Two focal populations were identified that were exposed to different predator types. The first population was exposed to larvae of the streamside salamander (Ambystoma barbouri) and the second to banded sculpin (Cottus carolinae). A laboratory experiment, in which different size classes of prey were offered simultaneously to individual predators, revealed that L. fontinalis suffered greatest mortality risk at small sizes with A. barbouri. Alternatively, with C. carolinae the risk of mortality was independent of size. Life history theory predicts that L. fontinalis from populations exposed to the gape-limited salamander larvae should be larger at maturity relative to individuals from populations exposed to C. carolinae. Field surveys on the two focal populations both within 1 year and across 4 years supported this prediction. Four other populations, two exposed to streamside salamander larvae and two to fish, provided additional support for the prediction. I concluded that L. fontinalis exhibited an adaptive response in size at maturity in response to population-specific predation risk. I then used gut content assays of the major predators to assess whether the population-specific life history strategies adopted by L. fontinalis were successful in avoiding predation.  相似文献   

16.
We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.  相似文献   

17.
SUMMARY.
  • 1 The foraging movements of late instar Ischnura elegans larvae were monitored in laboratory experiments to study the effects of predators on larval feeding behaviour.
  • 2 Ischnura larvae are sit-atid-wait, or ambush, foragers, moving occasionally between perches in search of profitable feeding sites. Larval foraging movements, monitored at different densities of Daphnia prey, increased significantly when prey were absent.
  • 3 In experiments without prey, larval movement was inhibited by the presence of fish predators, as well as by invertebrate predators (Notonecta glauca), but not by closely related, non-predatory invertebrates (Corixa punctata) or physical disturbance of the water (intermittent air bubbles).
  • 4 Further experiments varied Ischnura hunger levels (0–8 days without food) and illumination (light or dark) with and without notonectid predators. Hunger had no consistent effect on penultimate instar behaviour but final instar foraging activity was significantly modified: movements increased after 4 days starvation and decreased again after 8 days. This response was suppressed by the presence of predators. Both larval instars moved significantly less often in the light, even when predators were absent.
  • 5 These phenotypically flexible predator-avoidance responses are likely to decrease the risk of predation by both visual and tactile predators. However, predators clearly have an important influence on the feeding niche of Ischnura larvae, and may decrease the overall feeding efficiency, growth rate, and survival of larvae by constraining their movement in search of profitable feeding sites.
  相似文献   

18.
19.
Very little is known about the incidence of egg parasitoids in odonates, perhaps because Odonata eggs are well protected by stems or leaves, sometimes below water. In Central Italy (Pontecorvo, Frosinone Province) two damselflies, Calopteryx haemorrhoidalis and Platycnemis pennipes, occur in high densities. In August 2007 we collected 30 stems of the aquatic plant Potamogeton sp. used as substrate for oviposition and incubated eggs in the laboratory. Most stems (24 for C. haemorrhoidalis and 23 for P. pennipes) contained Odonata eggs. Parasitoids emerged from 12 stems, with a mean parasitism of 2% for C. haemorrhoidalis and 6% for P. pennipes, and a maximum of 14% and 50%, respectively. Furthermore, we observed egg‐laying of 19 females of C. haemorrhoidalis and 11 of P. pennipes, and marked the stems where oviposition was observed. Clutches remained in the river for five days and were then collected and incubated. Parasitoids emerged from 11 of 30 stems, with an average parasitism of 8% for C. haemorrhoidalis and 3% for P. pennipes (maximums of 50% and 29%, respectively). All parasitoids belonged to the family Mymaridae, and were identified as Anagrus (Anagrus) obscurus Förster, 1861, sensu Soyka, 1955 . This is the first time that this species is described as an egg parasitoid of odonates, and that the egg parasitoid of C. haemorrhoidalis and P. pennipes is identified. Our data suggest that egg parasitism might be a significant selective factor for both odonates in the studied locality, affecting female oviposition behavior.  相似文献   

20.
The primary goal of this study was to demonstrate, from field observations and laboratory experiments, some key trophic roles of benthic ctenophores as predators and prey in subtropical communities. We examined individuals of two benthic platyctenid species: Coeloplana waltoni, a minute epibiont on octocorals in exposed, open‐water settings; and Vallicula multiformis, an associate of calm‐water biofouling communities and floating Sargassum spp. Laboratory observations of individuals of both ctenophore species revealed frequent capture and ingestion of diverse zooplankton taxa, especially crustaceans. Laboratory predation trials demonstrated the capture of dolphinfish (Coryphaena hippurus) eggs and larvae by both ctenophore species. Dolphinfish eggs and larvae larger than individuals of C. waltoni were captured but not ingested during 2‐h trial periods. These prey items were sometimes purloined and ingested by polyps of the ctenophore's octocoral host. Ingestion of dolphinfish eggs and larvae by individuals of C. waltoni was observed, however, after longer periods of exposure to prey. In predation trials, dolphinfish eggs and larvae were both captured and ingested by larger individuals of the ctenophore species V. multiformis. Field and laboratory observations revealed diverse invertebrate and fish taxa that prey on both ctenophore species. In the laboratory, the mean daily per capita consumption of individuals of C. waltoni by a pomacanthid fish ranged 0.5–2.8 individuals, and ranged 2.6–3.6 individuals for predation by an ovulid mollusc. Field population densities of these predators ranged 0.1–0.7 individuals per m2 for the pomacanthid, and 0.2–1.1 individuals per m2 for the mollusc. Laboratory feeding observations demonstrated frequent consumption of individuals of V. multiformis by a sea anemone, and by three species of brachyuran crabs. Field observations revealed eight fishes that probably feed incidentally on individuals of V. multiformis. These findings add to the limited knowledge base of predator–prey dynamics in both C. waltoni and V. multiformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号