首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The individual flavin species of axenic Entamoeba histolytica were assayed: separated riboflavin was assayed by the lumiflavin method; flavin-adenine dinucleotide (FAD), by an enzymatic method; flavin mononucleotide (FMN) was calculated from the difference, total flavin minus FAD and riboflavin. The amount of flavin in micrograms per grams fresh cells follows: total flavin, 7.6 ± 0.9 calculated as riboflavin; riboflavin, 1.6 ± 0.7; FMN, 6.6 ± 0.5; and FAD, 1.2 ± 0.1. Recalculated to nanomoles per milligrams total amebal protein these values were: total flavin, 0.21; riboflavin, 0.04; FMN, 0.15; and FAD, 0.02. The identity of each flavin was confirmed by a paper chromatographic method. Analyses on Panmede, the main source of flavins in the TP-S-1 medium, indicate that it contains all three forms of flavin. Its contribution to growth medium in micrograms per milliliters: riboflavin, 2.1 ± 0.3; FMN, 0.6 ± 0.1; and FAD, 0.4 ± 0.1. The in vivo biosynthesis of FMN and FAD from riboflavin by E. histolytica is demonstrated. A new and convenient method was found to separate riboflavin from flavin nucleotides in tissue extracts.  相似文献   

2.
Commercially available preparations of flavin adenine dinucleotide (FAD) have been found to be 94% pure, the remaining 6% being composed of four or five minor contaminants which can be separated from FAD by reverse-phase high-performance liquid chromatography. FAD purified in this manner has been shown to be 100% pure. One of the contaminants has been identified as riboflavin 5'-pyrophosphate (RPP) by spectroscopic and chemical methods of analysis. This compound has been shown to exhibit biological activity as a weak cofactor for two FAD-requiring enzymes. With the apoprotein of porcine D-amino-acid oxidase, values determined for RPP were 8.4 microM for Km and 0.10 for Vmax compared to 0.47 microM and 0.28 (36 U/mg), respectively, for FAD. With fungal glucose apooxidase, values determined for RPP were 474 nM for Km and 0.02 for Vmax and 45 nM and 0.09 (105 U/mg), respectively, for FAD. RPP can also inhibit FAD biosynthesis. For bovine liver FAD synthetase, a Ki value for RPP against FMN was determined to be 9 microM where Km for FMN was 5.5 microM. These studies illustrate the value of riboflavin 5'-pyrophosphate as a flavin analog for use in the study of structure/function relationships within certain flavin-dependent enzymes.  相似文献   

3.
The net photosynthetic efficiency in C3 plants (such asrice, wheat and other major crops) can be decreased by30% due to the metabolism of photorespiration [1], inwhich glycolate oxidase (GO) serves as a key enzyme. Itis known that GO, with flavin mononucleotide (FMN) asa cofactor, belongs to flavin oxidase [2]. But it differs fromother flavoproteins in that FMN is loosely bound to itsapoprotein and there exists a dissociation balance betweenthem, which indicates that FMN probably regulate…  相似文献   

4.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

5.
Phosphoric acid esters of riboflavin can be easily separated by reverse-phase high-performance liquid chromatography using eluants of 0.1 M ammonium formate in aqueous methanol. Commercial FMN preparations contained seven different flavin phosphates; the content of riboflavin 5'-phosphate was 70-75% and is in agreement with previous studies. Millimole amounts of crude FMN can be processed by preparative HPLC. The method permits the preparation of greater than 99%-pure 5'-FMN. The following compounds were isolated in pure form and their structures determined: riboflavin 4'-phosphate, riboflavin 3'-phosphate, riboflavin 4',5'-diphosphate; riboflavin 3',4'-diphosphate, and riboflavin 3',5'-diphosphate. The latter compound binds tightly to apoflavodoxin from Megasphaera elsdenii (KD = 9.7 X 10(-9) M). The bound flavin has high catalytic activity, thus representing a novel type of FMN analog. A wide variety of structural analogs of FMN can be obtained in pure form by preparative HPLC.  相似文献   

6.
7.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

8.
The facultative anaerobe Shewanella oneidensis can reduce a number of insoluble extracellular metals. Direct adsorption of cells to the metal surface is not necessary, and it has been shown that S. oneidensis releases low concentrations flavins, including riboflavin and flavin mononucleotide (FMN), into the surrounding medium to act as extracellular electron shuttles. However, the mechanism of flavin release by Shewanella remains unknown. We have conducted a transposon mutagenesis screen to identify mutants deficient in extracellular flavin accumulation. Mutations in ushA, encoding a predicted 5′‐nucleotidase, resulted in accumulation of flavin adenine dinucleotide (FAD) in culture supernatants, with a corresponding decrease in FMN and riboflavin. Cellular extracts of S. oneidensis convert FAD to FMN, whereas extracts of ushA mutants do not, and fractionation experiments show that UshA activity is periplasmic. We hypothesize that S. oneidensis secretes FAD into the periplasmic space, where it is hydrolysed by UshA to FMN and adenosine monophosphate (AMP). FMN diffuses through outer membrane porins where it accelerates extracellular electron transfer, and AMP is dephosphorylated by UshA and reassimilated by the cell. We predict that transport of FAD into the periplasm also satisfies the cofactor requirement of the unusual periplasmic fumarate reductase found in Shewanella.  相似文献   

9.
Reversed-phase high-performance liquid chromatography has been used to separate a number of flavin and flavin analogs at the riboflavin, FMN, and FAD coenzyme level. Analytical methods were developed which enable the facile determination of a particular flavin or mixture of flavins present. These methods also allowed the separation of oxidized from reduced forms of oxygen-stable flavin analogs. Past investigations have utilized enzymatically synthesized FAD analogs with the problem of potential contamination by other levels of the coenzyme or ATP a cosubstrate in the flavokinase/FAD synthetase reaction. Preparative methods show that all the potential reaction products may be separated from one another thereby allowing the rapid purification of these redox coenzyme analogs. To demonstrate the utility of this method, radiolabeled FAD and 1-deazaFAD were prepared and purified.  相似文献   

10.
The FAD binding site of human liver monoamine oxidase A (MAO A) has been investigated by mutagenesis of the amino acid site of covalent FAD attachment (Cys-406) to an alanyl residue. Expression of the C406A mutant in Saccharomyces cerevisiae results in the formation of an active enzyme, as found previously with the rat liver enzyme. The activity of this mutant enzyme is labile to solubilization, thus requiring all experiments to be done with membrane preparations. C406A MAO A was expressed in a rib 5(-) strain of S. cerevisiae in the presence of 16 different riboflavin analogues. Inactive apoC406A MAO A is formed by induction of the enzyme in the absence of riboflavin. FAD but not FMN or riboflavin restores catalytic activity with an apparent K(d) of 62 +/- 5 nm. The results from both in vivo and in vitro reconstitution experiments show increased activity levels (up to approximately 7-fold higher) with those analogues exhibiting higher oxidation-reduction potentials than normal flavin and decreased activity levels with analogues exhibiting lower potentials. Analogues with substituents on the pyrimidine ring bind to C406A MAO A more weakly than normal FAD, suggesting specific interactions with the N(3) and N(1) positions. Analogues with substituents in the 7 and 8 positions bind to C406A MAO A with affinities comparable with that of normal FAD. These results are discussed in regard to functional significance of 8alpha-covalent binding of flavins to proteins.  相似文献   

11.
S Ghisla  V Massey  K Yagi 《Biochemistry》1986,25(11):3282-3289
6-Azidoflavins, 6-thiocyanatoflavins, and 6-mercaptoflavins at the lumiflavin, riboflavin, FMN, and FAD level were prepared from the corresponding 6-aminoflavins and some of their properties investigated. They are bound tightly by apoflavin enzymes which bind either riboflavin, FMN, or FAD. 6-Azidoflavins undergo facile photolysis. One major product was identified as 6-aminoflavin. A further product, which was formed also during acid decomposition of the azide, results from opening of the flavin benzene ring and is proposed to have a lumazine structure. 6-Thiocyanatoflavins are easily converted by dithiothreitol to 6-mercaptoflavins. The latter are stabilized against dimerization in the presence of reducing thiols. 6-Mercaptoflavins have a pK of 5.9, which corresponds to ionization of the 6-SH function. The neutral form is yellow, while the anion is green, due to a long-wavelength band (lambda max approximately 600 nm) extending beyond 700 nm. These properties suggest the use of these 6-substituted flavins for probing the active site of flavin enzymes. Because their reactive substituents are in close proximity to the flavin N(5)-position, these 6-substituted derivatives should also serve as useful probes of the environment around the flavin N(5), a position known to be involved in all flavin-mediated redox processes.  相似文献   

12.
Here we provide evidence that mitochondria isolated from rat liver can synthesize FAD from riboflavin that has been taken up and from endogenous ATP. Riboflavin uptake takes place via a carrier-mediated process, as shown by the inverse relationship between fold accumulation and riboflavin concentration, the saturation kinetics [riboflavin Km and Vmax values were 4.4+/-1.3 microM and 35+/-5 pmol x min(-1) (mg protein)(-1), respectively] and the inhibition shown by the thiol reagent mersalyl, which cannot enter the mitochondria. FAD synthesis is due to the existence of FAD synthetase (EC 2.7.7.2), localized in the matrix, which has as a substrate pair mitochondrial ATP and FMN synthesized from taken up riboflavin via the putative mitochondrial riboflavin kinase. In the light of certain features, including the protein thermal stability and molecular mass, mitochondrial FAD synthetase differs from the cytosolic isoenzyme. Apparent Km and apparent Vmax values for FMN were 5.4+/-0.9 microM and 22.9+/-1.4 pmol x min(-1) x (mg matrix protein)(-1), respectively. Newly synthesized FAD inside the mitochondria can be exported from the mitochondria in a manner sensitive to atractyloside but insensitive to mersalyl. The occurrence of the riboflavin/FAD cycle is proposed to account for riboflavin uptake in mitochondria biogenesis and riboflavin recovery in mitochondrial flavoprotein degradation; both are prerequisites for the synthesis of mitochondrial flavin cofactors.  相似文献   

13.
Sensitive capillary electrophoresis (CE) methods are required for emerging areas of biochemical research such as the metabolome. In this report, dynamic pH junction-sweeping CE with laser-induced fluorescence (LIF) detection is applied as a robust single method to analyze trace amounts of three flavin derivatives, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD), from several types of samples including bacterial cell extracts, recombinant protein, and biological fluids. Submicromolar amounts of flavin coenzymes were measured directly from formic acid cell extracts of Bacillus subtilis. Significant differences in flavin concentration were measured in cell extracts derived from either glucose or malate as the carbon source in the culture media. Quantitative assessment of FAD and FMN content from selected flavoenzymes was demonstrated after heat denaturation to release noncovalently bound coenzymes and deproteinization. This method was also applied to the analysis of free flavins in pooled human plasma and urine without the need for laborious off-line sample preconcentration. Picomolar detectability of flavins by CE-LIF detection was realized with on-line preconcentration (up to 15% capillary length used for injection) by dynamic pH junction-sweeping, resulting in a limit of detection (S/N = 3) of about 4.0 pM for FAD and FMN. This represents over a 60-fold improvement in concentration sensitivity compared to those of previous techniques using conventional injections. The method was validated in terms of reproducibility, sensitivity, linearity, and specificity. Flavin analysis by dynamic pH junction-sweeping CE-LIF offers a simple, yet sensitive way to analyze trace levels of flavin metabolites from complex biological samples.  相似文献   

14.
Involvement of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in cellular homeostasis has been well established for tissues other than the retina. Here, we present an optimized method to effectively extract and quantify FAD and FMN from a single neural retina and its corresponding retinal pigment epithelium (RPE). Optimizations led to detection efficiency of 0.1 pmol for FAD and FMN while 0.01 pmol for riboflavin. Interestingly, levels of FAD and FMN in the RPE were found to be 1.7- and 12.5-fold higher than their levels in the retina, respectively. Both FAD and FMN levels in the RPE and retina gradually decline with age and preceded the age-dependent drop in the functional competence of the retina as measured by electroretinography. Further, quantifications of retinal levels of FAD and FMN in different mouse models of retinal degeneration revealed differential metabolic requirements of these two factors in relation to the rate and degree of photoreceptor degeneration. We also found twofold reductions in retinal levels of FAD and FMN in two mouse models of diabetic retinopathy. Altogether, our results suggest that retinal levels of FAD and FMN can be used as potential markers to determine state of health of the retina in general and more specifically the photoreceptors.  相似文献   

15.
Abstract

The rapid and effective purification of soluble fumarate reductase from baker's yeast achieved by Blue Sepharose CL–6B chromatography. Cibacron Blue F3GA, the chromophore of Blue Sepharose, inhibited the activity of fumarate reductase. The enzyme bound to the column was selectively eluted by flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin. The purified enzyme was essentially homogeneous as indicated by polyacrylamide gel electrophoresis under non-denaturing conditions and under denaturing conditions in sodium dodecylsulfate. By this procedure, the enzyme could be rapidly purified with high yield from yeast cells.  相似文献   

16.
Riboflavin is a water-soluble vitamin (vitamin B2) required for the production of the flavin cofactors FMN and FAD. Mammals are unable to synthesize riboflavin and need a dietary supply of the vitamin. Riboflavin transport proteins operating in the plasma membrane thus have an important role in the absorption of the vitamin. However, their sequences remained elusive, and not a single eukaryotic riboflavin transporter is known to date. Here we used a genetic approach to isolate MCH5, a Saccharomyces cerevisiae gene with homology to mammalian monocarboxylate transporters, and characterize the protein as a plasma membrane transporter for riboflavin. This conclusion is based on the suppression of riboflavin biosynthetic mutants (rib mutants) by overexpression of MCH5 and by synthetic growth defects caused by deletion of MCH5 in rib mutants. We also show that cellular processes in multiple compartments are affected by deletion of MCH5 and localize the protein to the plasma membrane. Transport experiments in S. cerevisiae and Schizosaccharomyces pombe cells demonstrate that Mch5p is a high affinity transporter (Km = 17 microM) with a pH optimum at pH 7.5. Riboflavin uptake is not inhibited by protonophores, does not require metabolic energy, and operates by a facilitated diffusion mechanism. The expression of MCH5 is regulated by the cellular riboflavin content. This indicates that S. cerevisiae has a mechanism to sense riboflavin and avert riboflavin deficiency by increasing the expression of the plasma membrane transporter MCH5. Moreover, the other members of the MCH gene family appear to have unrelated functions.  相似文献   

17.
UVA light (320-400 nm) has been shown to produce deleterious biological effects in tissue due to the generation of singlet oxygen by substances like flavins or urocanic acid. Riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), beta-nicotinamide adenine dinucleotide (NAD), and beta-nicotinamide adenine dinucleotide phosphate (NADP), urocanic acid, or cholesterol in solution were excited at 355 nm. Singlet oxygen was directly detected by time-resolved measurement of its luminescence at 1270 nm. NAD, NADP, and cholesterol showed no luminescence signal possibly due to the very low absorption coefficient at 355 nm. Singlet oxygen luminescence of urocanic acid was clearly detected but the signal was too weak to quantify a quantum yield. The quantum yield of singlet oxygen was precisely determined for riboflavin (PhiDelta = 0.54 +/- 0.07), FMN (PhiDelta = 0.51 +/- 0.07), and FAD (PhiDelta = 0.07 +/- 0.02). In aerated solution, riboflavin and FMN generate more singlet oxygen than exogenous photosensitizers such as Photofrin, which are applied in photodynamic therapy to kill cancer cells. With decreasing oxygen concentration, the quantum yield of singlet oxygen generation decreased, which must be considered when assessing the role of singlet oxygen at low oxygen concentrations (inside tissue).  相似文献   

18.
19.
Saturable and reversible in vitro binding of [14C]riboflavin was found to occur on subcellular, sedimentable particles from maize coleoptiles and Cucurbita hypocotyls. The KD was ca. 6 M, the pH optimum was near 6.0, and the number of binding sites amounted to 0.1–0.5 M on a fresh-weight basis. When the reducing agent dithionite was present, riboflavin binding increased-the KD was 2.5 M, and the pH optimum above 8.0. The binding was specific: flavin mononucleotide (FMN) and flavin adenosine-dinucleotide (FAD) bound less tightly to these sites than riboflavin and another major soluble flavin, the previously described riboflavin-analog FX, occurring in grass coleoptiles. These flavin-binding sites were localized on vesicles derived from plasmalemma and endoplasmic reticulum by analyzing sucrose and metrizamide density gradients and marker enzymes.Abbreviations CCO cytochrome-c oxidase - CCR NADH-cytochrome-c oxidoreductase - ER endoplasmic reticulum - FAD flavin-adenosinedinucleotide - FMN flavin mononucleotide - MOPS N-morpholino-3-propansulfonic acid - NADH reduced -nicotinamide dinucleotide - nKP n thousand times g pellet - NPA l-naphthylphthalamic acid - PM plasma membrane, plasmalemma - RBF riboflavin - IAA indoleacetic acid - BA benzoic acid  相似文献   

20.
Apoenzyme of the major NAD(P)H-utilizing flavin reductase FRG/FRase I from Vibrio fischeri was prepared. The apoenzyme bound one FMN cofactor per enzyme monomer to yield fully active holoenzyme. The FMN cofactor binding resulted in substantial quenching of both the flavin and the protein fluorescence intensities without any significant shifts in the emission peaks. In addition to FMN binding (K(d) 0.5 microM at 23 degrees C), the apoenzyme also bound 2-thioFMN, FAD and riboflavin as a cofactor with K(d) values of 1, 12, and 37 microM, respectively, at 23 degrees C. The 2-thioFMN containing holoenzyme was about 40% active in specific activity as compared to the FMN-containing holoenzyme. The FAD- and riboflavin-reconstituted holoenzymes were also catalytically active but their specific activities were not determined. FRG/FRase I followed a ping-pong kinetic mechanism. It is proposed that the enzyme-bound FMN cofactor shuttles between the oxidized and the reduced form during catalysis. For both the FMN- and 2-thioFMN-containing holoenzymes, 2-thioFMN was about 30% active as compared to FMN as a substrate. FAD and riboflavin were also active substrates. FRG/FRase I was shown by ultracentrifugation at 4 degrees C to undergo a monomer-dimer equilibrium, with K(d) values of 18.0 and 13.4 microM for the apo- and holoenzymes, respectively. All the spectral, ligand equilibrium binding, and kinetic properties described above are most likely associated with the monomeric species of FRG/FRase I. Many aspects of these properties are compared with a structurally and functionally related Vibrio harveyi NADPH-specific flavin reductase FRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号