首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DnaA box sequences are a common motif present within the replication origin region of a diverse group of bacteria and prokaryotic extrachromosomal genetic elements. Although the origin opening caused by binding of the host DnaA protein has been shown to be critical for the loading of the DnaB helicase, to date there has been no direct evidence presented for the formation of the DnaB complex at the DnaA box site. For these studies, we used the replication origin of plasmid RK2 (oriV), containing a cluster of four DnaA boxes that bind DnaA proteins isolated from different bacterial species (Caspi, R., Helinski, D. R., Pacek, M., and Konieczny, I. (2000) J. Biol. Chem. 275, 18454-18461). Size exclusion chromatography, surface plasmon resonance, and electron microscopy experiments demonstrated that the DnaB helicase is delivered to the DnaA box region, which is localized approximately 200 base pairs upstream from the region of origin opening and a potential site for helicase entry. The DnaABC complex was formed on both double-stranded superhelical and linear RK2 templates. A strict DnaA box sequence requirement for stable formation of that nucleoprotein structure was confirmed. In addition, our experiments provide evidence for interaction between the plasmid initiation protein TrfA and the DnaABC prepriming complex, formed at DnaA box region. This interaction is facilitated via direct contact between TrfA and DnaB proteins.  相似文献   

2.
The requirement of DnaA protein binding for plasmid RK2 replication initiation the Escherichia coli was investigated by constructing mutations in the plasmid replication origin that scrambled or deleted each of the four upstream DnaA boxes. Altered origins were analyzed for replication activity in vivo and in vitro and for binding to the E. coli DnaA protein using a gel mobility shift assay and DNase I footprinting. Most strikingly, a mutation in one of the boxes, box 4, abolished replication activity and eliminated stable DnaA protein binding to all four boxes. Unlike DnaA binding to the E. coli origin, oriC, DnaA binding to two of the boxes (boxes 4 and 3) in the RK2 origin, oriV, is cooperative with box 4 acting as the "organizer" for the formation of the DnaA-oriV nucleoprotein complex. Interestingly, the inversion of box 4 also abolished replication activity, but did not result in a loss of binding to the other boxes. However, DnaA binding to this mutant origin was no longer cooperative. These results demonstrate that the sequence, position, and orientation of box 4 are crucial for cooperative DnaA binding and the formation of a nucleoprotein structure that is functional for the initiation of replication.  相似文献   

3.
P J Gaylo  N Turjman    D Bastia 《Journal of bacteriology》1987,169(10):4703-4709
The minimal origin of replication of the broad-host-range plasmid RK2 has two potential recognition sequences for the DnaA protein of Escherichia coli. DNA transfer by transformation into a dnaA-null mutant of E. coli showed that DnaA protein is needed for replication or maintenance of mini-RK2. We isolated and purified DnaA protein as a chimeric protein, covalently attached to a piece of collagen and beta-galactosidase. The hybrid protein specifically bound to restriction fragments from the oriV region of RK2, which contained the two dnaA boxes. Deletion of the second dnaA box inactivated the origin and abolished the binding of the hybrid protein to the DNA fragment that had suffered the deletion. When the second dnaA box was replaced with an EcoRI linker of identical length, origin activity was restored. Binding experiments showed that the linker provided a weak dnaA box. An alternative explanation was that the linker restored proper spacing between sequences on either side of the deleted box, thus restoring origin activity.  相似文献   

4.
Unidirectional replication of the P-group plasmid RK2.   总被引:19,自引:0,他引:19  
The mode of replication of the broad host-range plasmid RK2 has been determined from examination of molecular replicative forms cleaved with the restriction endonucleases EcoRI and Hind III. Replication is unidirectional, and proceeds from a unique origin. The location of the origin and other evidence suggests that genes involved in plasmid maintenance are not tightly clustered.  相似文献   

5.
Replication initiation of the broad host range plasmid RK2 requires binding of the host-encoded DnaA protein to specific sequences (DnaA boxes) at its replication origin (oriV). In contrast to a chromosomal replication origin, which functionally interacts only with the native DnaA protein of the organism, the ability of RK2 to replicate in a wide range of Gram-negative bacterial hosts requires the interaction of oriV with many different DnaA proteins. In this study we compared the interactions of oriV with five different DnaA proteins. DNase I footprint, gel mobility shift, and surface plasmon resonance analyses showed that the DnaA proteins from Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa bind to the DnaA boxes at oriV and are capable of inducing open complex formation, the first step in the replication initiation process. However, DnaA proteins from two Gram-positive bacteria, Bacillus subtilis and Streptomyces lividans, while capable of specifically interacting with the DnaA box sequences at oriV, do not bind stably and fail to induce open complex formation. These results suggest that the inability of the DnaA protein of a host bacterium to form a stable and functional complex with the DnaA boxes at oriV is a limiting step for plasmid host range.  相似文献   

6.
The sites of cleavage on the map of the broad-host-range plasmid RK2 (56 kilobases) were determined for the BglII, PstI, and SmaI restriction enzymes, and the determinants for tetracycline and ampicillin resistance were localized. The cleavage sites were clustered at or near the drug resistance genes. To localize regions required for plasmid replication and maintenance in Escherichia coli, we deleted nonessential regions of RK2 by partial digestion with the restriction endonuclease HaeII to produce small derivatives. The smallest stable replicon obtained contained five HaeII fragments of RK2 which total 5.4 kilobases. These fragments were derived from three regions of RK2 that are separated from each other by antibiotic resistance genes. One of these HaeII fragments (0.75 kilobases) has the properties expected of the origin of replication. The outer four fragments, located in two separate regions of RK2, were found to provide, in trans, functions that permit the replication of the HaeII fragment carrying the origin of the replication. These results indicate that at least two plasmid-encoded genes, capable of acting in trans, and a replication origin are required for RK2 replication and maintenance.  相似文献   

7.
C Weigel  A Schmidt  B Rückert  R Lurz    W Messer 《The EMBO journal》1997,16(21):6574-6583
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

8.
Y Itoh  Y Terawaki 《Plasmid》1989,21(3):242-246
Mini-Rts1 was found to be unable to replicate in a dnaA-null mutant. However, a mini-Rts1 derivative lacking entire tandem DnaA boxes in the replication origin retained the replication ability in a dnaA+ host although its copy number was about half that of the mini-Rts1 having complete DnaA boxes. Mini-Rts1cop1 that contains a high copy number mutation in repA was found to replicate more efficiently than mini-Rts1 of wild repA when DnaA boxes were deleted. In addition, the copy number of mini-Rts1cop1 without DnaA boxes increased 1.5-fold upon removal of incI iterons, whereas that of mini-Rts1 without DnaA boxes did not increase after the iterons were deleted. These indicate that the RepAcop1 protein can initiate the replication of mini-Rts1 efficiently even when DnaA boxes are absent from the origin of replication.  相似文献   

9.
The DnaA protein is essential for initiation of DNA replication in a wide variety of bacterial and plasmid replicons. The replication origin in these replicons invariably contains specific binding sites for the protein, called DnaA boxes. Plasmid P1 contains a set of DnaA boxes at each end of its origin but can function with either one of the sets. Here we report that the location of origin-opening, initiation site of replication forks and directionality of replication do not change whether the boxes are present at both or at one of the ends of the origin. Replication was bidirectional in all cases. These results imply that DnaA functions similarly from the two ends of the origin. However, origins with DnaA boxes proximal to the origin-opening location opened more efficiently and maintained plasmids at higher copy numbers. Origins with the distal set were inactive unless the adjacent P1 DNA sequences beyond the boxes were included. At either end, phasing of the boxes with respect to the remainder of the origin influenced the copy number. Thus, although the boxes can be at either end, their precise context is critical for efficient origin function.  相似文献   

10.
The minimal replication origin of the broad-host-range plasmid RK2, oriV, contains five iterons which are binding sites for the plasmid-encoded replication initiation protein TrfA, four DnaA boxes, which bind the host DnaA protein, and an AT-rich region containing four 13-mer sequences. In this study, 26 mutants with altered sequence and/or spacing of 13-mer motifs have been constructed and analysed for replication activity in vivo and in vitro. The data show that the replacement of oriV 13-mers by similar but not identical 13-mer sequences from Escherichia coli oriC inactivates the origin. In addition, interchanging the positions of the oriV 13-mers results in greatly reduced activity. Mutants with T/A substitutions are also inactive. Furthermore, introduction of single-nucleotide substitutions demonstrates very restricted sequence requirements depending on the 13-mer position. Only two of the mutants are host specific, functional in Pseudomonas aeruginosa but not in E. coli. Our experiments demonstrate considerable complexity in the plasmid AT-rich region architecture required for functionality. It is evident that low internal stability of this region is not the only feature contributing to origin activity. Our studies suggest a requirement for sequence-specific protein interactions within the 13-mers during assembly of replication complexes at the plasmid origin.  相似文献   

11.
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~ 15 Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.  相似文献   

12.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

13.
14.
By transformation of dnaA null mutant host cells that are suppressed either by an rnh mutation or by chromosomal integration of a mini-R1 plasmid, it was shown that replication of miniplasmids composed of the NR1 minimal replicon had no absolute dependence upon DnaA protein. In addition, the suppression of the dnaA null mutation by the integrated mini-R1, which is an IncFII relative of NR1, was found to be sensitive to the expression of IncFII-specific plasmid incompatibility. This suggests that the integrative suppression by mini-R1 is under the control of the normal IncFII plasmid replication circuitry. Although NR1 replication had no absolute requirement for DnaA, the copy numbers of NR1-derived miniplasmids were lower in dnaA null mutants, and the plasmids exhibited a much reduced stability of inheritance during subculture in the absence of selection. This suggests that DnaA protein may participate in IncFII plasmid replication in some auxiliary way, such as by increasing the efficiency of formation of an open initiation complex at the plasmid replication origin. Such an auxiliary role for DnaA in IncFII replication would be different from that for replication of most other plasmids examined, for which DnaA has been found to be either essential or unimportant.  相似文献   

15.
The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. Here, we present the nucleotide sequence of an 1167 base-pair region that encodes korB. Using sequence data from korB mutants, we identified the korB structural gene. The predicted polypeptide product is negatively charged and has a molecular weight of 39,015, which is considerably less than that estimated by its electrophoretic mobility in SDS/polyacrylamide gels. Secondary-structure predictions of korB polypeptide revealed three closely spaced helix-turn-helix regions with significant homology to similar structures in known DNA-binding proteins. The korB gene, like all other sequenced RK2 genes, shows a strong preference for codons ending in a G or C residue. This is similar to codon usage by genes of Klebsiella and Pseudomonas, the original hosts for RK2 and some closely related plasmids. We also sequenced the site of transposon Tn76 insertion in the host-range mutant pRP761 and found it to be located immediately upstream from korB in the incC gene. Finally, we report the presence of sequences resembling a replication origin within the korB structural gene: a cluster of four 19 base-pair direct repeats and a nearby potential binding site for Escherichia coli dna A replication protein.  相似文献   

16.
Broad host range plasmid RK2 encodes two versions of its essential replication initiation protein, TrfA, using in-frame translational starts spaced 97 amino acids apart. The smaller protein, TrfA-33, is sufficient for plasmid replication in many bacterial hosts. Efficient replication in Pseudomonas aeruginosa, however, specifically requires the larger TrfA-44 protein. With the aim of identifying sequences of TrfA-44 required for stable replication of RK2 in P. aeruginosa, specific deletions and a substitution mutant within the N terminus sequence unique to TrfA-44 were constructed, and the mutant proteins were tested for activity. Deletion mutants were targeted to three of the four predicted helical regions in the first 97 amino acids of TrfA-44. Deletion of TrfA-44 amino acids 21-32 yielded a mutant protein, TrfA-44Delta2, that had lost the ability to bind and load the DnaB helicase of P. aeruginosa or Pseudomonas putida onto the RK2 origin in vitro and did not support stable replication of an RK2 mini-replicon in P. aeruginosa in vivo. A substitution of amino acid 22 within this essential region resulted in a protein, TrfA-44E22A, with reduced activity in vitro, particularly with the P. putida helicase. Deletion of amino acids 37-55 (TrfA-44Delta3) slightly affected protein activity in vitro with the P. aeruginosa helicase and significantly with the P. putida helicase, whereas deletion of amino acids 71-88 (TrfA-44Delta4) had no effect on TrfA activity in vitro with either helicase. These results identify regions of the TrfA-44 protein that are required for recruitment of the Pseudomonas DnaB helicases in the initiation of RK2 replication.  相似文献   

17.
The trfA gene, encoding the essential replication initiation protein of the broad-host-range plasmid RK2, possesses an in-frame overlapping arrangement. This results in the production of TrfA proteins of 33 and 44 kDa, respectively. Utilizing deletion and site-specific mutagenesis to alter the trfA operon, we compared the replication of an RK2-origin plasmid in several distantly related gram-negative bacteria when supported by both TrfA-44 and TrfA-33, TrfA-33 alone, or TrfA-44/98L (a mutant form of the TrfA-44 protein) alone. TrfA-44/98L is identical to wild-type TrfA-44 with the exception of a single conservative amino acid alteration from methionine to leucine at codon 98; this alteration removes the translational start codon for the TrfA-33 protein. Copy number and stability were virtually identical for plasmids containing both TrfA-44 and TrfA-33 proteins or TrfA-44/98L alone in Pseudomonas aeruginosa and Agrobacterium tumefaciens, two unrelated bacteria in which TrfA-33 is poorly functional. This, along with recent in vitro studies comparing TrfA-44, TrfA-33, and TrfA-44/98L, suggests that the functional activity of TrfA-44 is not significantly affected by the 98L mutation. Analysis of minimal RK2 derivatives in certain gram-negative bacterial hosts suggests a role of the overlapping arrangement of trfA in facilitating the broad host range of RK2. RK2 derivatives encoding TrfA-44/98L alone demonstrated decreased copy number and stability in Escherichia coli and Azotobacter vinelandii when compared with derivatives specifying both TrfA-44 and TrfA-33. A strategy employing the trfA-44/98L mutant gene and in vivo homologous recombination was used to eliminate the internal translational start codon of trfA in the intact RK2 plasmid. The mutant intact RK2 plasmid produced only TrfA-44/98L. A small reduction in copy number and beta-lactamase expression resulted in E. coli, suggesting that overlapping trfA genes also enhance the efficiency of replication of the intact RK2 plasmid.  相似文献   

18.
Mutated forms of trfA, the replication protein gene of plasmid RK2, that support a minimal RK2 origin plasmid in Escherichia coli at copy numbers up to 23-fold higher than normal have been isolated. Six such high-copy-number (copy-up) mutations were mapped and sequenced. In each case, a single base transition led to an amino acid substitution in the TrfA protein primary sequence. The six mutations affected different residues of the protein and were located within a 69-base-pair region encoding 24 amino acids. Dominance tests showed that each of the mutants can be suppressed by wild-type trfA in trans, but suppression is highly dependent on the amount of wild-type protein produced. Excess mutant TrfA protein provided in trans significantly increased the copy number of RK2 and other self-replicating derivatives of RK2 that contain a wild-type trfA gene. These observations suggest that the mutations affect a regulatory activity of the TrfA replication protein that is a key factor in the control of initiation of RK2 replication.  相似文献   

19.
The broad host range plasmid RK2 has previously been found to contain three separate regions of the genome involved in replication and maintenance in Escherichia coli (C. M. Thomas, R. Meyer, D. R. Helinski, 1980, J. Bacteriol.141, 213–222). They include the origin of replication (oriRK2) and the trfA region which encodes a trans-acting function required for replication. The third region (trfB), although not essential for replication, supplies a function involved in the maintenance of plasmid RK2. Using the maxicell system of labeling plasmid-specific proteins, we have identified all of the proteins encoded by two miniplasmid derivatives of RK2 which contain only the regions oriRK2, trfA, and trfB. To determine which region specifies each protein, RK2/mini-ColE1 hybrid plasmids were used which contain various restriction fragments of the mini-RK2 replicon. The trfA region appears to encode three proteins designated A1 (39,000 MW), A2 (31,000 MW), and A3 (14,000 MW). Analysis of proteins synthesized by plasmids containing deleted forms of the trfA region indicates that the A2 protein is the essential trfA-encoded replication protein of plasmid RK2. The proteins A1 and A3 may be the products specified by the genes tra3 (involved in transmissibility) and kilB1 (involved in host-cell viability) which also map in the trfA region. The trfB region specifies two proteins designated B1 (36,000 MW) and B2 (30,000 MW). These may be the products of the two kil-override (kor) genes located in the trfB region which have been implicated in plasmid maintenance.  相似文献   

20.
The TrfA proteins, encoded by the broad host range plasmid RK2, are required for replication of this plasmid in a variety of Gram-negative bacteria. Two TrfA proteins, 33 and 44 kDa in molecular mass (designated TrfA-33 and TrfA-44, respectively), are expressed from the trfA gene of RK2 through the use of two alternative in-frame start codons within the same open reading frame. The two proteins have been purified from Escherichia coli to near homogeneity as a mixture of wild-type TrfA-44/33, as TrfA-33 alone and as a functional variant form of TrfA-44, designated TrfA-44(98L), which contains a leucine in place of the TrfA-33 methionine start codon. Cross-linking experiments demonstrated that TrfA-33 can multimerize in solution. By using gel mobility shift and DNase I footprinting techniques the binding properties of TrfA-33, TrfA-44(98L), and TrfA-44/33 to the origin of replication of plasmid RK2 were analyzed. All three protein preparations were able to bind very specifically to the cluster of five direct repeats (iterons) contained in the minimal origin of replication. Each protein preparation produced a ladder of TrfA/minimal oriV complexes of decreasing electrophoretic mobility. The DNase I protection pattern on the five iterons was identical for all three protein preparations and extended from the beginning of the first iteron to 5 base pairs upstream of the fifth iteron. Studies on the affinity of the proteins for DNA fragments containing one, two, or all five iterons of the origin revealed a strong preference of TrfA protein for DNA containing at least two iterons. To study the stability of TrfA.DNA complexes, association and dissociation rates of TrfA-33 and DNA fragments with one, two, or five iterons were measured. This analysis showed that unlike complexes involving two or five iterons the TrfA/one iteron complexes were highly unstable, suggesting some form of cooperativity between proteins or iterons in the formation of stable complexes and/or the requirement of specific sequences bordering the iterons at the RK2 origin of replication for the stabilization of TrfA/DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号