首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The evolutionary origin of the egg stage of animal development presents several difficulties for conventional developmental and evolutionary narratives. If the egg's internal organization represents a template for key features of the developed organism, why can taxa within a given phylum exhibit very different egg types, pass through a common intermediate morphology (the so-called "phylotypic stage"), only to diverge again, thus exemplifying the embryonic "hourglass"? Moreover, if different egg types typically represent adaptations to different environmental conditions, why do birds and mammals, for example, have such vastly different eggs with respect to size, shape, and postfertilization dynamics, whereas all these features are more similar for ascidians and mammals? Here, I consider the possibility that different body plans had their origin in self-organizing physical processes in ancient clusters of cells, and suggest that eggs represented a set of independent evolutionary innovations subsequently inserted into the developmental trajectories of such aggregates. I first describe how "dynamical patterning modules" (DPMs) associations between components of the metazoan developmental-genetic toolkit and certain physical processes and effects may have organized primitive animal body plans independently of an egg stage. Next, I describe how adaptive specialization of cells released from such aggregates could have become "proto-eggs," which regenerated the parental cell clusters by cleavage, conserving the characteristic DPMs available to a lineage. Then, I show how known processes of cytoplasmic reorganization following fertilization are often based on spontaneous, self-organizing physical effects ("egg-patterning processes": EPPs). I suggest that rather than acting as developmental blueprints or prepatterns, the EPPs refine the phylotypic body plans determined by the DPMs by setting the boundary and initial conditions under which these multicellular patterning mechanisms operate. Finally, I describe how this new perspective provides a resolution to the embryonic hourglass puzzle.  相似文献   

2.
We hypothesize that aspects of animal multicellularity originated before the divergence of metazoans from fungi and social amoebae. Polarized epithelial tissues are a defining feature of metazoans and contribute to the diversity of animal body plans. The recent finding of a polarized epithelium in the non-metazoan social amoeba Dictyostelium discoideum demonstrates that epithelial tissue is not a unique feature of metazoans, and challenges the traditional paradigm that multicellularity evolved independently in social amoebae and metazoans. An alternative view, presented here, is that the common ancestor of social amoebae, fungi, and animals spent a portion of its life cycle in a multicellular state and possessed molecular machinery necessary for forming an epithelial tissue. Some descendants of this ancestor retained multicellularity, while others reverted to unicellularity. This hypothesis makes testable predictions regarding tissue organization in close relatives of metazoans and provides a novel conceptual framework for studies of early animal evolution. Editor's suggested further reading in BioEssays Searching for Eve: Basal metazoans and the evolution of multicellular complexity Abstract.  相似文献   

3.
4.
The Evolution of Plant Body Plans--A Biomechanical Perspective   总被引:3,自引:0,他引:3  
Niklas  Karl J. 《Annals of botany》2000,85(4):411-438
Defining ‘plants’ inclusively as ‘photosyntheticeukaryotes’, four basic body plans are identifiable amongplant lineages (unicellular, siphonous, colonial and multicellular).All of these body plans occur in most plant lineages, but onlythe multicellular body plan was carried onto land by the embryophytes.Extensive morphological and anatomical homoplasy is evidentamong species with different body plans. This is ascribed tothe facts that the acquisition of nutrients and radiant energyis affected by plant body size, shape and geometry, and that,with the exception of the unicellular body plan, each of theother body plans involves an ‘open and indeterminate’ontogeny capable of modifying body size, shape and geometryregardless of how organized growth is achieved. In terms ofunicellular species, the available data indicate that size-dependentvariations in surface area, metabolic constituents (e.g. photosyntheticpigments), and reproductive rates limit maximum body size innutrient poor habitats or those that change rapidly or unpredictably.This maximum size can be exceeded in more stable niches by eitherthe cooperation of conspecific cells sharing a common extracellularmatrix (i.e. the ‘colonial’ body plan) or by repeatedmitotic cellular division associated with sustained cytoplasmic(symplastic) continuity (i.e. multicellularity). The siphonousplant body plan may have been evolutionarily derived from aunicellular or multicellular ancestral life form. Each of theplant body plans is reviewed in terms of its biomechanical advantagesand disadvantages. Variants of the multicellular body plan,especially those of the Chlorophyta, Charophyta, and Embryophyta,are given special emphasis. Copyright 2000 Annals of BotanyCompany Algae, biomechanics, body plans, body size, embryophytes, evolution, multicellularity, plants  相似文献   

5.
Multicellularity has evolved multiple times independently from a variety of ancestral unicellular lineages. Past research on multicellularity was focused more on explaining why it was repeatedly invented and less so on the molecular foundations associated with each transition. Several recent comparative functional analyses of microbial unicellular and multicellular genomes have begun to throw considerable light on the molecular commonalities exhibited by independent multicellular transitions. These have enabled the delineation of the likely functional components of the genetic toolkit required for multicellular existence and to surprising discoveries, such as the presence of several toolkit components in unicellular lineages. The study of these toolkit proteins in a unicellular context has begun yielding insights into their ancestral functions and how they were coopted for multicellular development.  相似文献   

6.
Early embryos of metazoan species are subject to the same set of physical forces and interactions as any small parcels of semi-solid material, living or nonliving. It is proposed that such “generic” properties of embryonic tissues have played a major role in the evolution of biological form and pattern by providing an array of morphological templates, during the early stages of metazoan phylogeny, upon which natural selection could act. The generic physical mechanisms considered include sedimentation, diffusion, and reaction-diffusion coupling, all of which can give rise to chemical nonuniformities (including periodic patterns) in eggs and small multicellular aggregates, and differential adhesion, which can lead to the formation of boundaries of non-mixing between adjacent cell populations. Generic mechanisms that produce chemical patterns, acting in concern with the capacity of cells to modulate their adhesivity (presumed to be a primitive, defining property of metazoa), could lead to multilayered gastrulae of various types, segmental organization, and many of the other distinguishing characteristics of extant and extinct metazoan body plans. Similar generic mechanisms, acting on small tissue primordia during and subsequent to the establishment of the major body plans, could have given rise to the forms of organs, such as the vertebrate limbs. Generic physical processes acting on a single system of cells and cell products can often produce a widely divergent set of morphological phenotypes, and these are proposed to be the raw material of the evolution of form. The establishment of any ecologically successful form by these mechanisms will be followed, under this hypothesis, by a period of genetic evolution, in which the recruitment of gene products to produce the “generically templated” morphologies by redundant pathways would be favoured by intense selection, leading to extensive genetic change with little impact on the fossil record. In this view, the stabilizing and reinforcing functions of natural selection are more important than its ability to effect incremental change in morphology. Aspects of evolution which are problematic from the standard neo-Darwinian viewpoint, or not considered within that framework, but which follow in a straightforward fashion from the view presented here, include the beginnings of an understanding of why organisms have the structure and appearance they’ do, why homoplasy (the recurrent evolution of certain forms) is so prevalent, why evolution has the tempo and mode it does (“punctuated equilibrium”), and why a “rapid” burst of morphological evolution occurred so soon after the origin of the metazoa.  相似文献   

7.
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.  相似文献   

8.
SYNOPSIS. A diverse assemblage of invertebrate animals, someof which basically resemble the forms found in modern oceans,appears in the fossil record soon after the advent of the Cambrianperiod, though the first large multicellular animals clearlyarose even earlier. How this occurred is among the intellectuallychallenging mysteries of biology. The solution to this mysteryis likely to emerge, in part, from an understanding of the molecularprocesses by which modern animals use their genetic informationto construct their body plans during embryonic development.We discuss a mechanistic hypothesis that was presented earlieras an explanation of the causal events underlying the "Cambrianexplosion," and thus the divergence of large animal body plans.  相似文献   

9.
We use the budding yeast, Saccharomyces cerevisiae, to investigate one model for the initial emergence of multicellularity: the formation of multicellular aggregates as a result of incomplete cell separation. We combine simulations with experiments to show how the use of secreted public goods favors the formation of multicellular aggregates. Yeast cells can cooperate by secreting invertase, an enzyme that digests sucrose into monosaccharides, and many wild isolates are multicellular because cell walls remain attached to each other after the cells divide. We manipulate invertase secretion and cell attachment, and show that multicellular clumps have two advantages over single cells: they grow under conditions where single cells cannot and they compete better against cheaters, cells that do not make invertase. We propose that the prior use of public goods led to selection for the incomplete cell separation that first produced multicellularity.  相似文献   

10.
Evolution is often deemed irreversible. The evolution of complex traits that require many mutations makes their reversal unlikely. Even in simpler traits, reversals might become less likely as neutral or beneficial mutations, with deleterious effects in the ancestral context, become fixed in the novel background. This is especially true in changes that involve large reorganizations of the organism and its interactions with the environment. The evolution of multicellularity involves the reorganization of previously autonomous cells into a more complex organism; despite the complexity of this change, single cells have repeatedly evolved from multicellular ancestors. These repeated reversals to unicellularity undermine the generality of Dollo's law. In this article, we evaluated the dynamics of reversals to unicellularity from recently evolved multicellular phenotypes of the brewers yeast Saccharomyces cerevisae. Even though multicellularity in this system evolved recently, it involves the evolution of new levels of selection. Strong selective pressures against multicellularity lead to rapid reversibility to single cells in all of our replicate lines, whereas counterselection favoring multicellularity led to minimal reductions to the rates of reversal. History and chance played an important role in the tempo and mode of reversibility, highlighting the interplay of deterministic and stochastic events in evolutionary reversals.  相似文献   

11.
Complex fungi     
《Fungal Biology Reviews》2018,32(4):205-218
  相似文献   

12.
《Fungal Biology Reviews》2020,34(4):151-169
The evolution of multicellularity has been one of the major transitions in the history of life. In contrast to animals and plants, how multicellularity evolved in fungi and how it compares to the general principles distilled from the study of more widely studied model systems, has received little attention. This review broadly discusses multicellular functioning and evolution in fungi. We focus on how fungi solved some of the common challenges associated with the evolution of multi-celled organisms and what unique challenges follow from the peculiar, filamentous growth form of fungi. We identify and discuss seven key challenges for fungal multicellular growth: apical growth, compartmentalization, long-distance mass transport, controlling mutational load, cell-to-cell communication, differentiation and adhesion. Some of these are characteristic of all multicellular transitions, whereas others are unique to fungi. We hope this review will facilitate the interpretation of fungal multicellularity in comparison with that of other multicellular lineages and will prompt further research into how fungi solved fundamental challenges in one of the major transitions in their evolutionary history.  相似文献   

13.
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor.  相似文献   

14.
The cellular slime mold Dictyostelium has cell‐cell connections similar in structure, function, and underlying molecular mechanisms to animal epithelial cells. These similarities form the basis for the proposal that multicellularity is ancestral to the clade containing animals, fungi, and Amoebozoa (including Dictyostelium): Amorphea (formerly “unikonts”). This hypothesis is intriguing and if true could precipitate a paradigm shift. However, phylogenetic analyses of two key genes reveal patterns inconsistent with a single origin of multicellularity. A single origin in Amorphea would also require loss of multicellularity in each of the many unicellular lineages within this clade. Further, there are numerous other origins of multicellularity within eukaryotes, including three within Amorphea, that are not characterized by these structural and mechanistic similarities. Instead, convergent evolution resulting from similar selective pressures for forming multicellular structures with motile and differentiated cells is the most likely explanation for the observed similarities between animal and dictyostelid cell‐cell connections.  相似文献   

15.
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.  相似文献   

16.
Major increases in complexity during animal evolution occurred at the transition from a unicellular protozoan to a multicellular metazoan, the evolution of Bilateria from diploblasts (possibly the Cambrian explosion) and during early vertebrate evolution. A role for gene duplication in the third event has been widely discussed. Here I examine the possible role of gene duplications and domain shuffling in the first two events. There is evidence for a wave of gene duplications and shuffling which may have paved the way for multicellularity; there are also examples of gene duplications that may have facilitated the transition from diploblasts to Bilateria.  相似文献   

17.
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions‐promoting multicellularity.  相似文献   

18.
Multicellular organisms appeared on Earth through several independent major evolutionary transitions. Are such transitions reversible? Addressing this fundamental question entails understanding the benefits and costs of multicellularity versus unicellularity. For example, some wild yeast strains form multicellular clumps, which might be beneficial in stressful conditions, but this has been untested. Here, we show that unicellular yeast evolve from clump‐forming ancestors by propagating samples from suspension after larger clumps have settled. Unicellular yeast strains differed from their clumping ancestors mainly by mutations in the AMN1 (Antagonist of Mitotic exit Network) gene. Ancestral yeast clumps were more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts, but they grew slower without stress. These findings suggest disadvantages and benefits to multicellularity and unicellularity that may have impacted the emergence of multicellular life forms.  相似文献   

19.
Morphological evolution is usually considered to occur by the selection of small heritable variations in the expression of anatomical traits, on the basis of improved adaptation to new environmental conditions. An alternative mode of morphological evolution is proposed here: the production of a spectrum of forms by the action of intrinsic physical properties of cell aggregates, followed by intense selection for biochemical mechanisms that make the generation of a subset of viable morphologies, and pathways of transition between morphologies, more reliable. This view provides an account of the origins of important features of metazoan body plans and organ forms, including gastrulation and other types of tissue multilayering, lumen formation, and segmentation. It also implies that most major morphological innovations would occur early in phylogeny, often more than once, with much subsequent genetic selection being of a stabilizing or canalizing variety. Consistent with recent findings, this view predicts that functional redundancy among developmentally important genes and genetic circuits should be prevalent.  相似文献   

20.
Multicellular complexity is a central topic in biology, but the evolutionary processes underlying its origin are difficult to study and remain poorly understood. Here we use experimental evolution to investigate the tempo and mode of multicellular adaptation during a de novo evolutionary transition to multicellularity. Multicelled “snowflake” yeast evolved from a unicellular ancestor after 7 days of selection for faster settling through liquid media. Over the next 220 days, snowflake yeast evolved to settle 44% more quickly. Throughout the experiment the clusters evolved faster settling by three distinct modes. The number of cells per cluster increased from a mean of 42 cells after 7 days of selection to 114 cells after 227 days. Between days 28 and 65, larger clusters evolved via a twofold increase in the mass of individual cells. By day 227, snowflake yeast evolved to form more hydrodynamic clusters that settle more quickly for their size than ancestral strains. The timing and nature of adaptation in our experiment suggests that costs associated with large cluster size favor novel multicellular adaptations, increasing organismal complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号